
TDT4136 Logic and Reasoning Systems

Jørgen Grimnes
Assignment 3

Fall 2013

1

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 3

1 A* algorithm

Implementation I’ve implemented the A* algorithm from scratch in Python
to make it easier to read and understand the implementation. This implementa-
tion makes us of PriorityQueues to quickly decide which node has the currently
best estimate for begin (close to) a goal state.

Generalized I’ve made a generalized implementation of the A* algorithm.
The class AstarNode contains the structural important variables and serves as
an abstract A*-node. Then by implementing the class Node, you will be able
to quickly adapt this A* implementation. There are also two different methods
that has to be implemented: distance and heuristic. Distance() is how the script
should calculate the degree of difference between a parent and a child node. The
heuristic() method should return an optimistic estimate as to how far away from
the goal state the current node is.
The method generate children also has to be updated.

Speed-ups This Python script has focused on speed, rather than memory
usage. There are no open or closed lists, they are implied through the boolean
variables. This gets rid of the very expensive method of checking for list member-
ship (compared to checking a single variable). To force this A* implementation
into becoming a Depth-first search, we would only have to give each successing
child node a lower f-score than the current nodes. This is achievable by using a
semistatic decreasing f-score, and subtract a small value from this score before
returning it to the given node.

Fscoreinitial = 10000

Fscorenextnode = Fscoreinitial − ∆small

Fscorenode = Fscorenextnode

To act as a breadth-first search, we would add a small delta to the f-score instead.

Fscoreinitial = 0

Fscorenextnode = Fscoreinitial + ∆small

Fscorenode = Fscorenextnode

Reconstructing the path The method construct path() will build an ances-
tor path to the goal node, so that we are able to find our path to the solution.
This would represent the different squares to move a agent in a pathfinding
exercise.

The implementation is found on the next page.

2

from Queue import PriorityQueue
import math
import itertools

exists = {} # Keep track of existing nodes, so that one node may have multiple parents.
 # This is required if you wish to find the optimal path.
exist_key = set() # for a faster existence check.

class AstarNode:
 parent = None
 f_score = None
 h_score = None
 is_expanded = False
 is_observed = False
 g_score = ()
 children = []

 def generate_children(self):
 def swap(index):
 seq = list(sequence)
 seq[sep], seq[index] = seq[index], '_'
 return ''.join(seq)
 #end swap
 sequence = self.sequence
 sep = sequence.index('_')
 valid_moves = filter(
 # filter out the invalid moves such as moving a piece out of the puzzle
 lambda x: len(sequence)>x>=0,
 [sep-2,sep-1,sep+1,sep+2]
)

 valid_children = list(itertools.imap(swap, valid_moves))
 for seq in valid_children:
 node = Node(seq)
 node.children = []
 if node.key not in exist_key:
 exists.update({node.key:node})
 exist_key.add(node.key)
 self.children.append(exists[node.key])

class Node(AstarNode):
 def __init__(self, sequence):
 self.sequence = sequence
 self.key = sequence # unique key for hashing purposes.

 def __repr__(self):
 return self.sequence

"precompiling" the heuristic math function.
This is especially effective with the PYPY iterpreter.
split_distance = lambda x,y: abs(x-y)
def heuristic(node):
 # goals
 goal_r = xrange(0,(len(node.sequence)-1)/2)
 goal_b = xrange(goal_r[-1]+2, len(node.sequence))
 #

 reds = sorted([index for index,c in enumerate(node.sequence) if c=='r'])
 blacks = sorted([index for index,c in enumerate(node.sequence) if c=='b'])

 tot = sum(itertools.imap(split_distance, reds, goal_r))
 tot += sum(itertools.imap(split_distance, blacks, goal_b))

 return tot

def distance(parent,child):
 """
 We dont have any definition of the distance between two nodes.
 """
 return 1

def astar(start):
 queued_nodes = PriorityQueue()
 start.g_score = 0
 start.h_score = heuristic(start)
 start.f_score = start.g_score + start.h_score
 start.is_observed = True
 queued_nodes.put((start.f_score,start))

 nn = 0

 while not queued_nodes.empty():
 current = queued_nodes.get()[1] # [f_score, node]
 nn += 1
 if current.h_score == 0:
 return construct_path(current),nn
 else:
 current.is_observed = True
 current.generate_children()
 current.is_expanded = True
 for child in current.children:
 evaled_g_score = current.g_score + distance(current,child)
 if evaled_g_score<child.g_score:
 if child.is_expanded:
 child.parent = current
 child.g_score = evaled_g_score
 child.f_score = child.g_score + child.h_score
 current.is_expanded = False
 child.is_observed = False
 queued_nodes.put((child.f_score,child))
 elif child.is_observed:
 child.parent = current
 child.g_score = evaled_g_score
 else:
 current.is_observed = True
 child.parent = current
 child.g_score = evaled_g_score
 child.h_score = heuristic(child)
 child.f_score = child.g_score + child.h_score
 queued_nodes.put((child.f_score,child))
 return Exception('No result')

def construct_path(node):
 tmp = []
 while node.parent:
 tmp.append(node.parent)
 node = node.parent
 return tmp

"""
Example usage:
print astar(start_node)
"""
gene = "bbb_rrr"
out = astar(Node(gene))
print "nodes:", out[1], "\tsteps:", len(out[0])

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 3

2 Notes to the implementation

The A* implementation will run until a goal state is discovered, and then return
the found state. Disregarding possible better solution that were hidden due to
a poorly implementet heuristic. Thus the bread-first implementation could in
theory be able to discover better solutions since such a thourough search takes
care to expand every single “parent node”. By running the depth-first version of
the search, we are playing a game of chance. We might have to go through tonns
of nodes to reach our goal. Since each state has on average 3 possible children
and we might have to search deeper than 1000 levels, we would a probability of
reaching the optimal state with < 0.31000 = 1.32 ∗ 10−523. The heuristics used
is fairly good. The script completes a 192-checkers in less than 5 seconds.

How I made a depth first algorithm

root

20

17

1819

1516

12

Decreasing heuristic value
The heuristic returns a decrementing value if
the given state isn't the goal state. If the input
state is the goal state, the heuristic returns 0.

... 0

the goal state

14 13

5

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 3

How I made a depth first algorithm

root

1

4

32

65

Decreasing heuristic value
The heuristic returns a incrementing value if
the given state isn't the goal state. If the input
state is the goal state, the heuristic returns 0.

... 0

the goal state

7 98 10 1211

19 2120...

How does it generate children?

Move set The script generates a set of valid moves, which then dictates the
child states to be initialized.

def generate_children(self):
 def swap(index):
 """
 This function swaps the symbol at {index} with the
 separator symbol _
 """
 seq = list(sequence)
 seq[sep], seq[index] = seq[index], '_'
 return ''.join(seq)
 #end swap

 sequence = self.sequence # the symbolic representation of this state. eg: rrr_bbb
 sep = sequence.index('_') # the index of the separator
 valid_moves = filter(
 # filter out the invalid moves such as moving a piece out of the puzzle
 lambda x: len(sequence)>x>=0,
 [sep-2,sep-1,sep+1,sep+2]
)
 valid_children = list(itertools.imap(swap, valid_moves))
 for seq in valid_children:
 """
 Loop over the valid children as generated.
 If the child's hash key exists, insert a reference
 to the already existing child.
 Else we create a new entry
 """
 node = Node(seq)
 node.children = []
 if node.key not in exist_key:
 exists.update({node.key:node})
 exist_key.add(node.key)
 self.children.append(exists[node.key])

Figure 1: The python child generator

6

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 3

RRRBBB

4 legal moves for the blank space

RRRBBB

RRRBBB

RRRBBB

RRRBBB

RRRBBB

2 legal moves for the blank space

RRRBBB

RRBRBB

RRRBBB

3 legal moves for the blank space

RRRBBB

RRRBBB

RRRBBB

Figure 2: Valid moves in different states.

7

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 3

3 Results

(375,255)(21,15) (69,48)A* (246,168)

12 24 30Search
algorithm

breadth first -

(88,41)

(136,15)

depth first -
>10.199.000 nodes

-
>22.369.000 nodes

6

(4052,2765)

(11992,48)

-

K-checker

An overview description of the solutions to 6-checkers and
30-checkers

6-checkers This is the easiest problem instance to solve. The A* algorithm only has
to inspect 21 states to find the optimal path of 15 steps. The implemen-
tation could be improves by not generating all the states before they are
necessary, but since memory is not an issue I have ignored that approach.
The total child nodes generated is 64 nodes.

30-checkers This is the hardest problem instance in this exercise. The algorithm has
to inspect a total of 375 states, but generates in fact 1444 child nodes in
total. The optimal path consists of 255 steps from the starting state to
our goal. The number of generated children is still much lower than what
is needed for the bredth-firsth search, which gave up at 22.4 million nodes.

addendum The sequence of generated children respects figure 2.

8

