
TDT4136 Logic and Reasoning Systems

Jørgen Grimnes
Assignment 4

Fall 2013

1

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

1 Simulated Annealing

The search node

Since Python code is pretty self-explanatory, I have appended a few lines of
comment to the script instead of writing an extended explanation here. These
extended comments are found in the source script.

class Node:
 def __init__(self, gene):
 # The node must contain a cost value
 self.gene = gene
 self.cost = self.objective_function(gene)

 def random_neighbour(self):
 # **IMPLEMENT**
 # generate neighbors
 """
 We only care about pseudo generating the neighbors,
 since we are going to pick just one of them. Thus
 we only need to perform a "small" random alteration
 to the parent.
 """
 return neighbor

 def objective_function(self, gene):
 # **IMPLEMENT**
 # evaluate this state

 return evaluation

Figure 1: The python implementation of the generalized search node

2

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

Handling the temperature variations

def initial_temp(node):
 """
 f.ex upper bound on (max cost - min cost)

 The example below belongs to the Egg Box exercise.
 Returns the maximum cost possible by putting an egg in each
 of the availible spots.
 """
 tmp = np.ones(shape=node.gene.shape,dtype="uint8")
 return float(node.objective_function(tmp))

def dependant_initial_t(temperature,node,neighbor):
 """
 Increase the temperature to make this neighbor a very likely choice.
 This helps us to "correct" the initial temperature if it was initially
 too low.
 This function may not decrease the temperature.
 """
 x = temperature/(abs(node.cost-neighbor.cost)+1)*math.log1p(100/99)
 return temperature/x if 1>x>0 else temperature

def reduce_t(temperature,repetitions):
 """
 common function for temperatur reduction
 """
 return temperature/math.log(repetitions+2,2)

Figure 2: How this script handles the temperature variations.

3

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

The main search function

def sa(start_node, goal_cost):
 """

 d : # of repetitions pr temperature value
 This should initially be set to something like the size(neighborhood)
 but since we're only generating a single neighbor, we're forced to
 approximate.

 """
 node = start_node
 d = start_node.gene.shape[0]**2 # number of repetitions pr temperature value
 temperature = initial_temp(node)

 repetitions = 0
 while temperature>1e-100 and node.cost > goal_cost:
 neighbor = Node(node.random_neighbor(),k) # choose random neigh
 if neighbor.cost < node.cost:
 node = neighbor
 else:
 annealing = random.uniform(0,1)
 if annealing < math.pow(math.e,-(neighbor.cost-node.cost)/temperature):
 """
 A stochastic evaluation for checking it its time to perform the
 annealing.
 """
 node = neighbor
 repetitions += 1

 if repetitions<d:
 # set a dependant initial temperature
 # we enter this clause during the first couple of runs
 temperature = dependant_initial_t(temperature,node,neighbor)
 elif repetitions%d==0:
 # and then we enter this clause occationally afterwards.
 temperature = reduce_t(temperature,repetitions)
 #end while
 return node

Figure 3: How this script handles the temperature variations.

4

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

2 The Egg Carton Puzzle

The specialized implementation

I made a few alterations to the generalized node to be able to constraining the
k-value. I am also using the NumPy function shuffle to generate a new random
child node. Shuffle() will move around the elements in the given row or column,
and thus perform a “minor” alteration to the parent gene (as required).The idea
behind the objective function() will be explained later.
My code required to further customizing to solve the assignment.

class Node:
 def __init__(self, gene, k):
 # The node must contain a cost value
 self.gene = gene
 self.k = k
 self.cost = self.objective_function(gene)

 def random_neighbour(self):
 # generate neighbors
 tmp = np.copy(self.gene)
 np.random.shuffle(tmp[random.random()*tmp.shape[0],:])
 np.random.shuffle(tmp[:,random.random()*tmp.shape[0]])
 return tmp

 def objective_function(self, gene):
 n = gene.shape[0]
 k = self.k
 horizonal = np.sum(gene, axis=1)-k
 vertical = np.sum(gene, axis=0)-k
 diag1 = np.array([
 sum(gene.diagonal(k-n+i))
 for i in xrange(2*(n-k)+1)
])-k
 diag2 = np.array([
 sum(np.fliplr(gene).diagonal(k-n+i))
 for i in xrange(2*(n-k)+1)
])-k

 return np.sum(horizonal[horizonal>0],axis=0) + \
 np.sum(vertical[vertical>0],axis=0) + \
 np.sum(diag2[diag2>0],axis=0) + \
 np.sum(diag1[diag1>0],axis=0)

Figure 4: The python implementation of the specialized search node

5

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

The problem representation

0 1 010

00 01 1

1 01 00

000 11

00101

1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 01100

We translate the egg box into an array representation

Main idea

Actually implememtation
To improve the time complexity of our search, I have implemented NumPy matrices intead

0 1 010

00 01 1

1 01 00

000 11

00101
[[1 0 1 0 0]
 [0 1 0 0 1]
 [0 1 0 1 1]
 [1 0 1 0 1]

 [1 0 1 1 0]]

Legend:
1 = egg
0 = empty space

I chose this implementation strategy because it would make it a lot easier
for me to perform the evaluation in the objective function. When represented
like this, all we need to do is sum up the integers along a defined line.

6

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

The objective function

Main idea
Calculate the sum of the integers along a defined
direction.

We start off by calculating the sum across all
the horizontal rows, and subtract the
permitted number of eggs in a single row (k)

0 1 010

00 01 1

1 01 00

000 11

00101 2 - k

2 - k

2 - k

2 - k

2 - k

Calculate the sum across all the vertical
columns, and subtract the permitted
number of eggs in a single columns (k)

0 1 010

00 01 1

1 01 00

000 11

00101

2 - k2 - k2 - k2 - k2 - k

Calculate the sum across all the diagonals and subtract the [k], starting from the
diagonal with at least [k] elements. For instructional purposes, I’ve chosen k=3

0 1 010

00 01 1

1 01 00

000 11

00101

2 - k 2 - k 2 - k

2 - k

2 - k

0 1 010

00 01 1

1 01 00

000 11

00101

2 - k
2 - k

2 - k

2 - k

2 - k

This function will always return a positive value, and only return 0 if we
have an optimal solution. It is computationally fast, but horrific in memory if
we were to encouter BIG boxes.

7

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

The execution results

Simulated Annealing - (5x5) box of 10 eggs with k=2:
[[0 1 0 1 0]
 [0 0 0 1 1]
 [0 1 0 0 1]
 [1 0 1 0 0]
 [1 0 1 0 0]]

Simulated Annealing - (6x6) box of 12 eggs with k=2:
[[0 0 1 1 0 0]
 [1 0 0 0 1 0]
 [0 0 1 0 1 0]
 [1 1 0 0 0 0]
 [0 0 0 1 0 1]
 [0 1 0 0 0 1]]

Simulated Annealing - (8x8) box of 8 eggs with k=1:
[[0 0 1 0 0 0 0 0]
 [0 0 0 0 1 0 0 0]
 [0 1 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 1]
 [1 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 1 0]
 [0 0 0 1 0 0 0 0]
 [0 0 0 0 0 1 0 0]]

Simulated Annealing - (10x10) box of 29 eggs with k=1:
[[1 0 0 0 1 0 0 1 0 0]
 [0 0 0 1 0 1 0 1 0 0]
 [0 0 1 1 0 1 0 0 0 0]
 [1 0 1 0 0 0 0 0 1 0]
 [0 0 0 0 0 1 1 0 0 1]
 [0 0 0 0 0 0 1 0 1 0]
 [1 0 0 0 1 0 0 0 0 1]
 [0 0 1 0 0 0 1 0 0 1]
 [0 1 0 0 1 0 0 0 1 0]
 [0 1 0 1 0 0 0 1 0 0]]

Discuss the similarities and differences between heuristics
and objective functions.

A heuristic function serves as a means to describing how far this state is from
the goal state. It has a definition of a goal to reach whilst a objective function
looks at the given state objectively, and tells us how good this state is. The
term “objective function” is used when it returns a value we want to maximize
or minimize (as is done in this assignment).

8

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

The Python script

import random
import math
import itertools
import numpy as np

"""
minimizing

Observation:
* each node should generate the same number of neighbors
* be aware of poor performance under spiky neighborhoods
* yields better results than local search and multisstart search after t time
* should not be used on TSP or similar problems

This example will sort the digits 0123456789 #note that 0 will be removed from the integer
"""

class Node:
 def __init__(self, gene, k):
 # The node must contain a cost value
 self.gene = gene
 self.k = k
 self.cost = self.objective_function(gene)

 def random_neighbour(self):
 # generate neighbors
 tmp = np.copy(self.gene)
 np.random.shuffle(tmp[random.random()*tmp.shape[0],:])
 np.random.shuffle(tmp[:,random.random()*tmp.shape[0]])
 return tmp

 def objective_function(self, gene):
 n = gene.shape[0]
 k = self.k
 horizonal = np.sum(gene, axis=1)-k
 vertical = np.sum(gene, axis=0)-k
 diag1 = np.array([
 sum(gene.diagonal(k-n+i))
 for i in xrange(2*(n-k)+1)
])-k
 diag2 = np.array([
 sum(np.fliplr(gene).diagonal(k-n+i))
 for i in xrange(2*(n-k)+1)
])-k

 return np.sum(horizonal[horizonal>0],axis=0) + \
 np.sum(vertical[vertical>0],axis=0) + \
 np.sum(diag2[diag2>0],axis=0) + \
 np.sum(diag1[diag1>0],axis=0)

def initial_temp(node):
 tmp = np.ones(shape=node.gene.shape,dtype="uint8")
 return float(node.objective_function(tmp))

def dependant_initial_t(temperature,node,neighbor):
 # Increase the temperature to make this neighbor a very likely choice
 # This function may not decrease the temperature

 x = temperature/(abs(node.cost-neighbor.cost)+1)*math.log1p(100/99)
 return temperature/x if 1>x>0 else temperature

def reduce_t(temperature,repetitions):
 # common function for temperatur reduction
 return temperature/math.log(repetitions+2,2)

def sa(start_node, goal_cost, k):
 node = start_node
 d = start_node.gene.shape[0]**2 # number of repetitions pr temperature value
 temperature = initial_temp(node)

 repetitions = 0
 while temperature>1e-100 and node.cost > goal_cost:

9

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

 neighbor = Node(node.random_neighbour(),k) # choose random neigh
 if neighbor.cost < node.cost:
 node = neighbor
 else:
 annealing = random.uniform(0,1)
 if annealing < math.pow(math.e,-(neighbor.cost-node.cost)/temperature):
 node = neighbor
 repetitions += 1

 if repetitions<d:
 # set a dependant initial temperature
 temperature = dependant_initial_t(temperature,node,neighbor)
 elif repetitions%d==0:
 temperature = reduce_t(temperature,repetitions)
 #end while
 return node

n=6 # box size
x = 12 # eggs
k = 2
gene = np.array([1]*x+[0]*(int(n**2)-x)).reshape(n,n)

print "Simulated Annealing - (%dx%d) box of %d eggs width k=%d:" % (n,n,x,k)

print sa(
 Node(gene,k),
 goal_cost = 0,
 k = k
).gene

10

