TDT4136 Logic and Reasoning Systems

Jorgen Grimnes
Assignment 4

Fall 2013

Jorgen Grimnes

Fall 2013

1 Simulated Annealing

The search node

Since Python

code is pretty self-explanatory, I have appended a few lines of
comment to the script instead of writing an extended explanation here. These

extended comments are found in the source script.

class No

de:

def

def

def

Figure 1:

__init_ (self, gene):

The node must contain a cost value
self.gene = gene

self.cost = self.objective_function(gene)

random_neighbour(self):

*kIMPLEMENT**

generate neighbors

We only care about pseudo generating the neighbors,
since we are going to pick just one of them. Thus
we only need to perform a "small" random alteration
to the parent.

return neighbor
objective_function(self, gene):
xxIMPLEMENT*

evaluate this state

return evaluation

The python implementation of the generalized search node

TDT4136 Logic and Reasoning Systems
Assignment 4

Jorgen Grimnes TDT4136 Logic and Reasoning Systems
Fall 2013 Assignment 4

Handling the temperature variations

def

def

def

initial_temp(node):

f.ex upper bound on (max cost - min cost)

The example below belongs to the Egg Box exercise.
Returns the maximum cost possible by putting an egg in each
of the availible spots.

tmp = np.ones(shape=node.gene.shape,dtype="uint8")

return float(node.objective_function(tmp))

dependant_initial_t(temperature,node,neighbor):

Increase the temperature to make this neighbor a very likely choice.
This helps us to "correct" the initial temperature if it was initially
too low.

This function may not decrease the temperature.

x = temperature/(abs(node.cost-neighbor.cost)+1)*math.loglp(100/99)
return temperature/x if 1>x>0 else temperature

reduce_t(temperature,repetitions):

common function for temperatur reduction

return temperature/math.log(repetitions+2,2)

Figure 2: How this script handles the temperature variations.

Jorgen Grimnes TDT4136 Logic and Reasoning Systems
Fall 2013 Assignment 4

The main search function

def sa(start_node, goal_cost):

d : # of repetitions pr temperature value
This should initially be set to something like the size(neighborhood)
but since we're only generating a single neighbor, we're forced to
approximate.

node = start_node
d = start_node.gene.shapel[0]l*x2 # number of repetitions pr temperature value
temperature = initial_temp(node)

repetitions = 0
while temperature>le-100 and node.cost > goal_cost:
neighbor = Node(node.random_neighbor(),k) # choose random neigh
if neighbor.cost < node.cost:
node = neighbor
else:
annealing = random.uniform(@,1)
if annealing < math.pow(math.e,-(neighbor.cost-node.cost)/temperature):
A stochastic evaluation for checking it its time to perform the
annealing.
node = neighbor
repetitions += 1

if repetitions<d:
set a dependant initial temperature
we enter this clause during the first couple of runs
temperature = dependant_initial_t(temperature,node,neighbor)
elif repetitions%d==0:
and then we enter this clause occationally afterwards.
temperature = reduce_t(temperature,repetitions)
#end while
return node

Figure 3: How this script handles the temperature variations.

Jorgen Grimnes TDT4136 Logic and Reasoning Systems
Fall 2013 Assignment 4

2 The Egg Carton Puzzle

The specialized implementation

I made a few alterations to the generalized node to be able to constraining the
k-value. I am also using the NumPy function shuffle to generate a new random
child node. Shuffle() will move around the elements in the given row or column,
and thus perform a “minor” alteration to the parent gene (as required).The idea
behind the objective function() will be explained later.

My code required to further customizing to solve the assignment.

class Node:
def __init_ (self, gene, k):
The node must contain a cost value
self.gene = gene
self.k = k

self.cost = self.objective_function(gene)

def random_neighbour(self):
generate neighbors
tmp = np.copy(self.gene)
np.random.shuffle(tmp[random.random()*tmp.shapel0],:])
np.random.shuffle(tmp[:, random. random()*tmp.shapel[0]])
return tmp

def objective_function(self, gene):

n = gene.shape[0]

k = self.k

horizonal = np.sum(gene, axis=1)-k

vertical = np.sum(gene, axis=0)-k

diagl = np.array([
sum(gene.diagonal(k-n+i))
for i in (2% (n-k)+1)

diag2 = np.array(
sum(np.fliplr(gene).diagonal(k-n+i))
for i in (2x(n-k)+1)

1)-k
return np.sum(horizonallhorizonal>0],axis=0) + \
np.sum(vertical[vertical>0],axis=0) + \
np.sum(diag2[diag2>0],axis=0) + \
np.sum(diagl[diag1>0],axis=0)

Figure 4: The python implementation of the specialized search node

Jorgen Grimnes TDT4136 Logic and Reasoning Systems
Fall 2013 Assignment 4

The problem representation

Main idea

We translate the egg box into an array representation
I1I0I1I0I0II0I1I0I0I1II0I1I0I1I0II1I0I0I0I1II0I0I‘1‘I1IOI
\

—— 0|1 [0]0O(1
oj1|o0]1(o0
1{0]0f0]1

Actually implememtation

To improve the time complexity of our search, | have implemented NumPy matrices intead

1]o|1]|o]o

[[1 010 0]
ol1|o]o]1

[01001]
o|l1flo]1]o =i> [01011]
1]/oflofo]1 [10101]

[10110]]
ofof[1]1]o0

I chose this implementation strategy because it would make it a lot easier
for me to perform the evaluation in the objective function. When represented
like this, all we need to do is sum up the integers along a defined line.

Jorgen Grimnes TDT4136 Logic and Reasoning Systems
Fall 2013 Assignment 4

The objective function

Main idea
Calculate the sum of the integers along a defined
direction.
We start off by calculating the sum across all Calculate the sum across all the vertical
the horizontal rows, and subtract the columns, and subtract the permitted
permitted number of eggs in a single row (k) number of eggs in a single columns (k)
1]0|1]0]O
ojt1]ofo|1
ojl1]lo]1]o0 1]1]0|]1]0]O
1]olofof1 Of1]10]0]1
ojoj1ft1]o ojt1joj1]o
110|001
ojol1]1]o0

Calculate the sum across all the diagonals and subtract the [k], starting from the
diagonal with at least [k] elements. For instructional purposes, I've chosen k=3

1]0 1?-0| rJolw]o]o
o |+ e | ¥ o | e e | 1
o | Vo] 0 o e [[N
Yol e el 1o o [N
glo| 4 [1]o0 ol o 1uu

This function will always return a positive value, and only return 0 if we
have an optimal solution. It is computationally fast, but horrific in memory if
we were to encouter BIG boxes.

Jorgen Grimnes TDT4136 Logic and Reasoning Systems
Fall 2013 Assignment 4

The execution results

Simulated Annealing - (5x5) box of 10 eggs with k=2:
[[01010]
[0

[
[
[

PR S
(SRS
S

0
1
0
0

R, Ro

Simulated Annealing - (6x6) box of 12 eggs with k=2:
[[0 0
[100
[0 01
110
0

0

[y

Sorooor

[0 0
[0 1

[SESESE RS
S

Simulated
[[0

nnealing - (8x8) box of 8 eggs with k=1:

[SHE

[SESESESESESEN ST -
[EESESESESESNSR SR

a
0
0
0
0 1]
0
1
0
0

=
oo res
ESAIS SRS GRS
oroooeoSee

Simulated

=1

@@@SSD—'SD—'I—'@%

ESESE SIS SIS IS S
LS SIS ISR SIS IS i

ling - (10x10) box of 29 eggs with k=1:

(SRS

S
Lol il SIS IS IS IS IS SRS
[SEERSEENSESESESRSN S -4

9
0
0
0
1
0 1]
1
0
0
1
0

ISESIE SNSRI NN
[l SIS IS RIS SIS I el i S

Discuss the similarities and differences between heuristics
and objective functions.

A heuristic function serves as a means to describing how far this state is from
the goal state. It has a definition of a goal to reach whilst a objective function
looks at the given state objectively, and tells us how good this state is. The
term “objective function” is used when it returns a value we want to maximize
or minimize (as is done in this assignment).

Jorgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 4

The Python script

import random
import math

import itertools
import numpy as np

minimizing

Observation:

*

*
*
*

each node should generate the same number of neighbors
be aware of poor performance under spiky neighborhoods

yields better results than local search and multisstart search after t time

should not be used on TSP or similar problems

This example will sort the digits 0123456789 #note that @ will be removed from the integer

class Node:

de

de

de

de

EY

kY

3

a3

def __init__ (self, gene, k):

The node must contain a cost value

self.gene = gene
self.k = k

self.cost = self.objective_function(gene)

def random_neighbour(self):
generate neighbors
tmp = np.copy(self.gene)

np. random. shuffle(tmp[random.random()*tmp.shapel0],:1)
np.random.shuffle(tmp[:, random. random()*tmp.shapel[0]])

return tmp

def objective_function(self, gene):
n = gene.shape[0]
k = self.k
horizonal = np.sum(gene, axis=1)-k
vertical = np.sum(gene, axis=0)-k
diagl = np.array([

sum(gene.diagonal(k-n+i))
for i in xrange(2%(n-k)+1)

1)-k
diag2 = np.array([

sum(np. fliplr(gene).diagonal(k-n+i))

for i in xrange(2%(n-k)+1)

1)-k

return np.sum(horizonallhorizonal>0],axis=0) + \
np.sum(verticallvertical>0],axis=0) + \
np.sum(diag2[diag2>0],axis=0) + \
np.sum(diagl[diagl>0],axis=0)

initial_temp(node):

tmp = np.ones(shape=node.gene.shape,dtype="uint8")
return float(node.objective_function(tmp))

dependant_initial_t(temperature,node,neighbor):

Increase the temperature to make this neighbor a very likely choice

This function may not decrease the temperature

x = temperature/(abs(node.cost-neighbor.cost)+1)*math.loglp(100/99)

return temperature/x if 1>x>0 else temperature

reduce_t(temperature,repetitions):

common function for temperatur reduction
return temperature/math.log(repetitions+2,2)

sa(start_node, goal_cost, k):
node = start_node

d = start_node.gene.shape[@]*%2 # number of repetitions pr temperature value

temperature = initial_temp(node)

repetitions = @

while temperature>le-100 and node.cost > goal_cost:

Jorgen Grimnes TDT4136 Logic and Reasoning Systems

Fall 2013 Assignment 4
neighbor = Node(node.random_neighbour(),k) # choose random neigh
if neighbor.cost < node.cost:
node = neighbor
else:
annealing = random.uniform(0,1)
if annealing < math.pow(math.e,-(neighbor.cost-node.cost)/temperature):
node = neighbor
repetitions += 1
if repetitions<d:
set a dependant initial temperature
temperature = dependant_initial_t(temperature,node,neighbor)
elif repetitions%d==0:
temperature = reduce_t(temperature,repetitions)
#end while
return node
n=6 # box size
x = 12 # eggs
k =2

gene = np.array([1]xx+[0]x(int(n**2)-x)).reshape(n,n)

print "Simulated Annealing - (%dx%d) box of %d eggs width k=%d:" % (n,n,x,k)

print sa(
Node(gene,k),
goal_cost = 0,
k =k
).gene

10

