
TDT4136 Logic and Reasoning Systems

Jørgen Grimnes
Assignment 5

Fall 2013

1

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 5

1 How the algorithm works

0000 0 X

0011 0
X

X
X

1 1 11 0
X

X

X
X

X

2 112 1
X

X
X

21 31 2
X

X
X

X

X
X

X
X

X
X

X
X

X

X
X

X
X
1111 3

X
X

X
X

X

Evaluations Choices

If there is multiple equally
good fields, the algorithm
picks one at random

Evaluate every field in the
current row by observing
how many conflicts this
field would have introduced
if we chose to put a queen
in this field.

Here we see two fields with
2s. The field contains a
higher integer because
there are multiple queens
which make indicates that
this is a conflicted field

If there is just one non-
conflicted space, the
algorithm moves the queen
to this field.

If there is no perfect fields,
the algorithm chooses
randomly which one of the
best fields to move to. In
this case: the fields with
only one conflicting queen

When all the rows have been
evaluated, we check whether we
have any conflicts. If there were any
conflicts, we start to manipulate the
the first row again. If there were no
conflicts, the algorithm terminates.

2

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 5

2 The Python implementation

The MIN CONFLICT algorithm

try: import numpypy as np
except ImportError: import numpy as np
import random

class Queen:
 def __init__(self, row_index):
 self.row = row_index
 self.column = -1 # not yet on the board
#end class

def min_conflict(row,queens,k_queens):
 """
 This method is an implementation of the CSP min_conflict strategy.
 It checks every column against every queen, thus achieving a time
 complexity of k^2 (k-queens) which is reasonably low.
 """
 encountered_min = () # fewest possible conflict
 minimum_conflicts = [] # the columns which would yield the fewest

 for column in xrange(k_queens):
 """
 Loop over each column/field in a single row
 """
 out = 0
 for queen in queens:
 """
 Evaluate how many conflicts this current field would
 introduce in comparison to the other queens.
 """
 if queen.column != -1 and queen.row!=row:
 if queen.column == column:
 out += 1
 elif (queen.row - row) == (queen.column - column):
 out += 1
 elif (queen.row - row) == -(queen.column - column):
 out += 1

 """
 Keep track of the best results
 """
 if out<encountered_min:
 encountered_min = out
 minimum_conflicts = [column]
 elif out==encountered_min:
 minimum_conflicts.append(column)

 return random.choice(minimum_conflicts), encountered_min
#end min_conflict

def local_search(k_queens):
 queens = [Queen(i) # The i represents its row, which is constant.
 for i in xrange(k_queens)] # Our game pieces
 system_conflicts = None # Number of conflicts

 while system_conflicts!=0:
 # Keep running until there are no conflicts.
 system_conflicts = 0

 for queen in queens:
 """
 Loop over the queens and relocate them to a column which causes fewer
 conflicts, then update the total number of conflicts on our chess board.
 """
 queen.column, n_conflicts = min_conflict(queen.row, queens, k_queens)
 system_conflicts = system_conflicts + n_conflicts
 #endwhile

 return queens
end local search

The algorithm will loop through the different fields (columns) in the given
row, while it calculates how many conflicts would have been introduced if we
placed the current queen in this column. The method always keeps track of the
best solutions.

The idea is to check the (row, column) coordinate of every queen and see if
they are aligned with currently evaluating (row, column) either vertically or
diagonally. Since there are only a few arithmetic operations, this runs fast. See
the following page for the complete code.

This script is made to be run by the [PYPY interpreter]

3

http://pypy.org

try: import numpypy as np
except ImportError: import numpy as np
import random

class Queen:
 def __init__(self, row_index):
 self.row = row_index
 self.column = -1 # not yet on the board
#end class

def min_conflict(row,queens,k_queens):
 """
 This method is an implementation of the CSP min_conflict strategy.
 It checks every column against every queen, thus achieving a time
 complexity of k^2 (k-queens) which is reasonably low.
 """
 encountered_min = () # fewest possible conflict
 minimum_conflicts = [] # the columns which would yield the fewest

 for column in xrange(k_queens):
 """
 Loop over each column/field in a single row
 """
 out = 0
 for queen in queens:
 """
 Evaluate how many conflicts this current field would
 introduce in comparison to the other queens.
 """
 if queen.column != -1 and queen.row!=row:
 if queen.column == column:
 out += 1
 elif (queen.row - row) == (queen.column - column):
 out += 1
 elif (queen.row - row) == -(queen.column - column):
 out += 1

 """
 Keep track of the best results
 """
 if out<encountered_min:
 encountered_min = out
 minimum_conflicts = [column]
 elif out==encountered_min:
 minimum_conflicts.append(column)

 return random.choice(minimum_conflicts), encountered_min
#end min_conflict

def local_search(k_queens):
 queens = [Queen(i) # The i represents its row, which is constant.
 for i in xrange(k_queens)] # Our game pieces
 system_conflicts = None # Number of conflicts

 while system_conflicts!=0:
 # Keep running until there are no conflicts.
 system_conflicts = 0

 for queen in queens:
 """
 Loop over the queens and relocate them to a column which causes fewer
 conflicts, then update the total number of conflicts on our chess board.
 """
 queen.column, n_conflicts = min_conflict(queen.row, queens, k_queens)
 system_conflicts = system_conflicts + n_conflicts
 #endwhile

 return queens
end local search

k = 100 # bord size
results = local_search(k) # Returns k queen objects

display_matrix = np.zeros(shape=(k,k), # used to display the result
 dtype=np.uint8)
for queen in results: display_matrix[queen.row,queen.column] = 1

"""
Perform a numpy compatible (non-truncated) print-out of the results.
"""
print '\n'.join([' '.join(map(str,lines)) for lines in display_matrix.tolist()])

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 5

3 Results
Se

co
nd

s

K-queens from 0 to 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Runtime

This curve is somewhat better than the n2 time complexity I expected. The
algorithm has proven itself usable up to the 2000-queens problem. You may find
a solution for the 8, 16 and 35-queens problem on the following pages.

6

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 5

8 Queens

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

16 Queens

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

7

Jørgen Grimnes
Fall 2013

TDT4136 Logic and Reasoning Systems
Assignment 5

35 Queens

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0

0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0

1 0

0 0 0 0 0 0 0 0 0 1 0

0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 1

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0

4 Addendum

I had a hard time understanding how I should have copy-pasted some of the
domain changes here, since the algorithm only uses a “meta understanding” of
the queens domain. I have chosen this implementation so that the algorithm can
escape “awful” situations where the every element in the domain is conflicted.

8

	How the algorithm works
	The Python implementation
	Results
	Addendum

