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Solutions to exercise set 1

1 First note that the function has period 2π. The Fourier coefficients an and bn of a
function with period 2π is given by

a0 =
1

2π

∫ π

−π
f(x) dx (1)

an =
1

π

∫ π

−π
f(x) cosnx dx (2)

bn =
1

π

∫ π

−π
f(x) sinnx dx. (3)

Using the orthogonality property of trigonometric system [1, Theorem 1 p. 479],
some work can be spared by extracting these coefficients directly from the function:

a0 = 5

an =


−4 n = 2

5 n = 8

0 otherwise

bn =

{
−2 n = 5

0 otherwise.

2 a) A function has period p if f(x+ p) = f(x) for all x. Consider first the function
g(x) = f(kx) and define α = p/k. Then,

g(x+ α) = f(k(x+ α)) = f(k(x+ p/k)) = f(kx+ p) = f(kx) = g(x)

where the the periodicity of f has been used. Thus, f(kx) has period p/k.

Similarly for the function h(x) = f(x/k) and β = kp

h(x+ β) = f((x+ β)/k) = f((x+ pk)/k) = f(x/k + p) = f(x/k) = h(x).

Thus, f(x/k) has period pk.

b) By induction we have

f(x+ kp) = f(x+ p+ (k − 1)p) = f(x+ (k − 1)p) = f(x+ (k − 2)p)

= · · · = f(x+ p) = f(x)

Consider g(x) = f(kx). Then,

g(x+ p) = f(k(x+ p)) = f(kx+ kp) = f(kx) = g(x).

Thus, f(kx) has also period p.
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Solutions to exercise set 1

c) From the previous exercise g(x) = f(3x) has also period 2π and can be written
as

g(x) = ã0 +

∞∑
n=1

ãn cosnx+ b̃n sinnx

The goal would be to find the relation between the coefficients {an, bn} and
{ãn, b̃n}. From the equality g(x) = f(3x) we get

g(x) = a0 +
∞∑
n=1

an cos 3nx+ bn sin 3nx.

Using the same trick as in task 1, we can simply extract the coefficients from
this expression

ã0 = a0

ãn =

{
an/3 whenever n is divisible by 3

0 otherwise

b̃n =

{
bn/3 whenever n is divisible by 3

0 otherwise.

3 a) First note that f(x) is an even function, which implies that bn = 0 for all n in
(3). The coefficient a0 in (1) is given by

a0 =
1

2π

∫ π

−π
f(x) dx =

1

π

∫ π

0
f(x) dx =

1

π

∫ π

0
sin(x) dx =

1

π
[− cosx]π0 =

2

π
.

Finally, using the trigonometric identity

sin[(n+ 1)x]− sin[(n− 1)x] = 2 sinx cosnx

we get

an =
1

π

∫ π

−π
f(x) cosnx dx =

2

π

∫ π

0
f(x) cosnx dx =

2

π

∫ π

0
sinx cosnx dx

=
1

π

∫ π

0
sin[(n+ 1)x]− sin[(n− 1)x] dx

=
1

π

[
−cos[(n+ 1)x]

n+ 1
+

cos[(n− 1)x]

n− 1

]π
0

=
1

π

(
−(−1)n+1

n+ 1
+

(−1)n−1

n− 1
+

1

n+ 1
− 1

n− 1

)
= − 2

π

(−1)n + 1

n2 − 1

=

{
− 4
π

1
n2−1 n even

0 n odd.

where we have used cosnπ = (−1)n. The Fourier series of f(x) is thus given by

f(x) =
2

π
− 4

π

∞∑
n=1

1

4n2 − 1
cos 2nx.

August 22, 2017 Page 2 of 4



Solutions to exercise set 1

b) By evaluating the Fourier series above wisely at x = 0 we get

f(0) =
2

π
− 4

π

∞∑
n=1

1

4n2 − 1
.

Since we also have f(0) = 0, we find

∞∑
n=1

1

4n2 − 1
=

1

2

4 a) This function is neither odd nor even, and so all coefficients in (1), (2) and (3).
We first compute a0

a0 =
1

2π

∫ π

−π
f(x) dx =

1

2π

∫ π

0
x(π − x) dx =

1

2π

[
π

2
x2 − 1

3
x3
]π
0

=
π2

12
.

The following integrals is needed to compute an and bn∫ π

0
x cosnx dx =

[
1

n
x sinnx

]π
0︸ ︷︷ ︸

=0

− 1

n

∫ π

0
sinnx dx =

[
1

n2
cosnx

]π
0

=
(−1)n − 1

n2

∫ π

0
x sinnx dx =

[
− 1

n
x cosnx

]π
0

+
1

n

∫ π

0
cosnx dx︸ ︷︷ ︸
=0

= −π
n

(−1)n

∫ π

0
x2 cosnx dx =

[
1

n
x2 sinnx

]π
0︸ ︷︷ ︸

=0

− 2

n

∫ π

0
x sinnx dx︸ ︷︷ ︸

=−π
n
(−1)n

=
2π

n2
(−1)n

∫ π

0
x2 sinnx dx =

[
− 1

n
x2 cosnx

]π
0

+
2

n

∫ π

0
x cosnx dx︸ ︷︷ ︸
=

(−1)n−1

n2

= −π
2

n
(−1)n +

2

n3
[(−1)n − 1] .

We now have

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

0
x(π − x) cosnx dx

=

∫ π

0
x cosnx dx− 1

π

∫ π

0
x2 cosnx dx =

(−1)n − 1

n2
− 2

n2
(−1)n

=

{
− 2
n2 n even

0 n odd

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ π

0
x(π − x) sinnx dx

=

∫ π

0
x sinnx dx− 1

π

∫ π

0
x2 sinnx dx

= −π
n

(−1)n − 1

π

[
−π

2

n
(−1)n +

2

n3
[(−1)n − 1]

]
=

{
4
n3π

n odd

0 n even.
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The Fourier series of f(x) is thus

f(x) =
π2

12
−
∞∑
n=1

1

2n2
cos 2nx+

4

π

∞∑
n=1

1

(2n− 1)3
sin[(2n− 1)x]

b) By evaluating the Fourier series above wisely at x = 0 we get

f(0) =
π2

12
− 1

2

∞∑
n=1

1

n2

Since we also have f(0) = 0, we find

∞∑
n=1

1

n2
=
π2

6
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