Norwegian University of Science and Technology

1 a) Using the definition of Laplace transform [1, (1) p. 204], we have (using the substitution $\tau=t-n p$ and the periodicity of $f, f(\tau+n p)=f(\tau))$

$$
\begin{aligned}
\mathscr{L}\{f\} & =\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t=\sum_{n=0}^{\infty} \int_{n p}^{n p+p} f(t) \mathrm{e}^{-s t} \mathrm{~d} t=\sum_{n=0}^{\infty} \int_{0}^{p} f(\tau+n p) \mathrm{e}^{-s(\tau+n p)} \mathrm{d} \tau \\
& =\sum_{n=0}^{\infty} \mathrm{e}^{-s n p} \int_{0}^{p} f(\tau) \mathrm{e}^{-s \tau} \mathrm{~d} \tau=\int_{0}^{p} f(t) \mathrm{e}^{-s t} \mathrm{~d} t \sum_{n=0}^{\infty}\left(\mathrm{e}^{-s p}\right)^{n} \\
& =\frac{1}{1-\mathrm{e}^{-p s}} \int_{0}^{p} f(t) \mathrm{e}^{-s t} \mathrm{~d} t
\end{aligned}
$$

where we have used the following summation formula for geometric series was applied in the final equality

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, \quad|x|<1
$$

The condition $\left|\mathrm{e}^{-p s}\right|<1$ is satisfied since $s, p>0$.
b) With $f(t)=t$ we get (using partial integration)

$$
\begin{aligned}
\mathscr{L}\{f\} & =\frac{1}{1-\mathrm{e}^{-p s}} \int_{0}^{p} f(t) \mathrm{e}^{-s t} \mathrm{~d} t=\frac{1}{1-\mathrm{e}^{-p s}} \int_{0}^{p} t \mathrm{e}^{-s t} \mathrm{~d} t \\
& =\frac{1}{1-\mathrm{e}^{-p s}}\left(\left[-\frac{t}{s} \mathrm{e}^{-s t}\right]_{0}^{p}+\frac{1}{s} \int_{0}^{p} \mathrm{e}^{-s t} \mathrm{~d} t\right) \\
& =\frac{1}{1-\mathrm{e}^{-p s}}\left(-\frac{p}{s} \mathrm{e}^{-s p}-\frac{1}{s^{2}}\left[\mathrm{e}^{-s t}\right]_{0}^{p}\right)=\frac{1}{1-\mathrm{e}^{-p s}}\left(\frac{1-\mathrm{e}^{-p s}}{s^{2}}-\frac{p}{s} \mathrm{e}^{-p s}\right) \\
& =\frac{1}{s^{2}}-\frac{p}{1-\mathrm{e}^{-p s}} \frac{\mathrm{e}^{-p s}}{s}
\end{aligned}
$$

2 The RLC-circuit is govern by the following integro-differential equation [1, (1') p. 94]

$$
\begin{equation*}
L i^{\prime}(t)+R i(t)+\frac{1}{C} \int_{0}^{t} i(\tau) \mathrm{d} \tau=v(t) \tag{1}
\end{equation*}
$$

where (in our case)

$$
\begin{aligned}
v(t) & = \begin{cases}-34 \mathrm{e}^{-t} & 0<t<4 \\
0 & \text { otherwise }\end{cases} \\
& \left.=34 \mathrm{e}^{-t}(1-u(t-4))=34 \mathrm{e}^{-t}-34 \mathrm{e}^{-4} \mathrm{e}^{-(t-4)} u(t-4)\right) .
\end{aligned}
$$

The Laplace transform of this expression is given by (using $t$-shifting [1, (4) p. 219] and $[1,(7)$ p. 249])

$$
V(s)=\mathscr{L}\{v(t)\}=\frac{34}{s+1}-\frac{34 \mathrm{e}^{-4} \mathrm{e}^{4 s}}{s+1}=\frac{34\left(1-\mathrm{e}^{-4 s-4}\right)}{s+1}
$$

Equating this result with the Laplace transform of the left hand side of (1), we obtain (using [1, (1) p. 211] and [1, (4) p. 213])

$$
\begin{aligned}
\frac{34\left(1-\mathrm{e}^{-4 s-4}\right)}{s+1} & =\mathscr{L}\left\{L i^{\prime}(t)+R i(t)+\frac{1}{C} \int_{0}^{t} i(\tau) \mathrm{d} \tau\right\} \\
& =L(s I(s)-i(0))+R I(s)+\frac{1}{C} \frac{I(s)}{s} \\
& =s I(s)+4 I(s)+20 \frac{I(s)}{s}=\left(s+4+\frac{20}{s}\right) I(s)
\end{aligned}
$$

Thus,

$$
I(s)=\frac{34 s\left(1-\mathrm{e}^{-4 s-4}\right)}{(s+1)\left(s^{2}+4 s+20\right)}
$$

Using partial fraction expansion we get

$$
\begin{aligned}
\frac{34 s}{(s+1)\left(s^{2}+4 s+20\right)} & =\frac{A}{s+1}+\frac{B+D s}{s^{2}+4 s+20} \\
& =\frac{(A+D) s^{2}+(4 A+B+D) s+20 A+B}{(s+1)\left(s^{2}+4 s+20\right)} \\
& \Rightarrow\left\{\begin{array}{c}
A+D=0 \\
4 A+B+D=34 \\
20 A+B=0
\end{array}\right. \\
& \Rightarrow \quad A=-2, \quad B=40, \quad D=2 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
I(s) & =\left(-\frac{2}{s+1}+\frac{40+2 s}{s^{2}+4 s+20}\right)\left(1-\mathrm{e}^{-4 s-4}\right) \\
& =\left(-\frac{2}{s-(-1)}+\frac{2(s-(-2))}{(s-(-2))^{2}+4^{2}}+9 \cdot \frac{4}{(s-(-2))^{2}+4^{2}}\right)\left(1-\mathrm{e}^{-4} \mathrm{e}^{-4 s}\right)
\end{aligned}
$$

The inverse Laplace transform of this functions yields the final result (using $s$-shifting [1, Theorem 2 p. 208], $t$-shifting [1, Theorem 1 p. 219] and $[1, ~(7)$ and (13) and (14) p. 249])

$$
\begin{aligned}
i(t)= & -2 \mathrm{e}^{-1 \cdot t}+2 \mathrm{e}^{-2 t} \cos 4 t+9 \mathrm{e}^{-2 t} \sin 4 t \\
& -u(t-4) \mathrm{e}^{-4}\left(-2 \mathrm{e}^{-1 \cdot(t-4)}+2 \mathrm{e}^{-2(t-4)} \cos [4(t-4)]+9 \mathrm{e}^{-2(t-4)} \sin [4(t-4)]\right) \\
= & -2 \mathrm{e}^{-t}+\mathrm{e}^{-2 t}(2 \cos 4 t+9 \sin 4 t) \\
& -u(t-4)\left(-2 \mathrm{e}^{-t}+\mathrm{e}^{-2(t-2)}(2 \cos [4(t-4)]+9 \sin [4(t-4)])\right) .
\end{aligned}
$$

3 a) Taking the Laplace transform of

$$
y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y(t)=\delta(t-1)
$$

yields (using [1, Theorem 1 p. 211] and [1, (35) p. 250])

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4(s Y(s)-y(0))+5 Y(s)=\mathrm{e}^{-s}
$$

With the initial conditions $y(0)=0$ and $y^{\prime}(0)=3$ we have

$$
s^{2} Y(s)-3+4 s Y(s)+5 Y(s)=\mathrm{e}^{-s}
$$

such that

$$
Y(s)=\frac{\mathrm{e}^{-s}+3}{s^{2}+4 s+5}=\frac{3}{(s-(-2))^{2}+1^{2}}+\frac{\mathrm{e}^{-1 \cdot s}}{(s-(-2))^{2}+1^{2}}
$$

Taking the inverse Laplace transform (using s-shifting [1, Theorem 2 p. 208], $t$-shifting [1, Theorem 1 p. 219] and [1, (13) p. 249])

$$
y(t)=3 \mathrm{e}^{-2 t} \sin t+\mathrm{e}^{-2(t-1)} \sin (t-1) u(t-1)
$$

b) Taking the Laplace transform of

$$
\begin{aligned}
y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t) & =\delta\left(t-\frac{\pi}{2}\right)+u(t-\pi) \cos t \\
& =\delta\left(t-\frac{\pi}{2}\right)-u(t-\pi) \cos (t-\pi)
\end{aligned}
$$

yields (using [1, Theorem 1 p. 211], [1, Theorem 1 p. 219], [1, (14) p. 249] and [1, (34) and (35) p. 250])

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+5(s Y(s)-y(0))+6 Y(s)=\mathrm{e}^{-\pi s / 2}-\frac{s \mathrm{e}^{-\pi s}}{s^{2}+1}
$$

With the initial conditions $y(0)=0$ and $y^{\prime}(0)=0$ we have

$$
s^{2} Y(s)+5 s Y(s)+6 Y(s)=\mathrm{e}^{-\pi s / 2}-\frac{s \mathrm{e}^{-\pi s}}{s^{2}+1}
$$

such that

$$
Y(s)=\frac{\mathrm{e}^{-\pi s / 2}}{s^{2}+5 s+6}-\frac{s \mathrm{e}^{-\pi s}}{\left(s^{2}+1\right)\left(s^{2}+5 s+6\right)}
$$

Using partial fraction expansion we get $\left(s^{2}+5 s+6=(s+2)(s+3)\right)$

$$
\begin{aligned}
\frac{1}{s^{2}+5 s+6} & =\frac{A}{s+2}+\frac{B}{s+3}=\frac{(A+B) s+3 A+2 B}{s^{2}+5 s+6} \\
& \Rightarrow\left\{\begin{array}{r}
A+B=0 \\
3 A+2 B=1
\end{array}\right. \\
& \Rightarrow \quad A=1, \quad B=-1
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{s}{\left(s^{2}+1\right)\left(s^{2}+5 s+6\right)}=\frac{A+B s}{s^{2}+1}+\frac{C}{s+2}+\frac{D}{s+3}=\frac{A+B s}{s^{2}+1}+\frac{(C+D) s+3 C+2 D}{\left(s^{2}+5 s+6\right)} \\
& =\frac{(B+C+D) s^{3}+(A+5 B+3 C+2 D) s^{2}+(5 A+6 B+C+D) s+6 A+3 C+2 D}{\left(s^{2}+1\right)\left(s^{2}+5 s+6\right)} \\
& \Rightarrow \quad\left\{\begin{array}{c}
B+C+D=0 \\
A+5 B+3 C+2 D=0 \\
5 A+6 B+C+D=1 \\
6 A+3 C+2 D=0
\end{array}\right. \\
& \Rightarrow \quad A=\frac{1}{10}, \quad B=\frac{1}{10}, \quad C=-\frac{2}{5}, \quad D=\frac{3}{10} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
Y(s) & =\left(\frac{1}{s+2}-\frac{1}{s+3}\right) \mathrm{e}^{-\pi s / 2}-\left(\frac{1}{10} \frac{1+s}{s^{2}+1}-\frac{2}{5} \frac{1}{s+2}+\frac{3}{10} \frac{1}{s+3}\right) \mathrm{e}^{-\pi s} \\
& =\left(\frac{1}{s+2}-\frac{1}{s+3}\right) \mathrm{e}^{-s \pi / 2}-\frac{1}{10}\left(\frac{1}{s^{2}+1}+\frac{s}{s^{2}+1}-\frac{4}{s+2}+\frac{3}{s+3}\right) \mathrm{e}^{-\pi s}
\end{aligned}
$$

Taking the inverse Laplace transform (using $t$-shifting [1, Theorem 1 p. 219] and $[1,(7)$ and (13) and (14) p. 249])

$$
\begin{aligned}
y(t)= & \left(\mathrm{e}^{-2(t-\pi / 2)}-\mathrm{e}^{-3(t-\pi / 2)}\right) u\left(t-\frac{\pi}{2}\right) \\
& -\frac{1}{10}\left(\sin (t-\pi)+\cos (t-\pi)-4 \mathrm{e}^{-2(t-\pi)}+3 \mathrm{e}^{-3(t-\pi)}\right) u(t-\pi) \\
= & \left(\mathrm{e}^{-2(t-\pi / 2)}-\mathrm{e}^{-3(t-\pi / 2)}\right) u\left(t-\frac{\pi}{2}\right) \\
& +\frac{1}{10}\left(\sin t+\cos t+4 \mathrm{e}^{-2(t-\pi)}-3 \mathrm{e}^{-3(t-\pi)}\right) u(t-\pi)
\end{aligned}
$$

## References

[1] E. Kreyszig, Advanced engineering mathematics, 10th edition, John Wiley \& Sons, 2011.

