TMAA4145 Linear Methods
Fall 2017

. N . Exercise set 1
Norwegian University of Science

and Technology
Department of Mathematical
Sciences

Please justify your answers! The most important part is how you arrive at an answer, not
the answer itself.

Based on your exposure to mathematics in school and at university answer the
following questions.

a) State your favorite mathematical theorem, explain all the notions of the state-
ment and explain in a few words your choice.

b) Give three applications of mathematics to real-world problems.

The answers should be given such that your fellow students in the course are able to
understand them.

Let X,Y and Z be sets.
a) Show that XN(YUZ)=(XNY)U(XNZ).

b) Show that X\ (Y U Z) = (X\Y) N (X\Z).

Solution. a) We want to show that X N (YU Z) = (X NY)U (X NZ), and it is enough
toshow that z € XN(YUZ) <= z € (XNY)U(X NZ). We show this by the following
chain of equivalences:

reXNYUZ) <= zeXandoeeYUZ by the definition of N
< [reXandz€Y]or [zr€ X and x € Z] by definition of U
— zrze(XNY)Uu(XnNnZ) by definition of U.

By following these equivalences, we have shown that x € X N (YU Z) < =z €
(XNY)u(XnZ).

b) We now want to show that X\(YUZ) = (X\Y)N(X\Z), and we will do so by showing
that z € X\(Y U Z) <= 2z € (X\Y)N(X\2).
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reX\(YUZ) <= zeXandax¢YUZ definition of \
— zeXandzeYNnzC de Morgan’s law
< zrzeXandz¢Yandax ¢ Z definition of N and complement
< [reXandz¢Y]and [z € X and z ¢ Z|
— rzeX\YNX\Z definition of N and \

Show that the sets Z of integers and Q of rational numbers are countable.

Solution. Let us start by showing that Z is countable. The quick way of solving this is
to use proposition 2.4.4 in the lecture notes: countable unions of countable subsets are
themselves countable. In this case Z is the union of three countable sets: the positive
integers (countable by definition), the negative integers (obviously countable - make sure
that you would know how to prove it!) and {0} — hence Z is countable.

For those interested, we also solve the problem using the definition in a way that hopefully
makes the result obvious. We need to find a bijection ¢ from Z to N. To construct ¢, we
need to assign to each integer a natural number. There is an obvious way of doing this:

Integer n | Natural number ¢(n)
-3 7
-2 5
-1 3
0 1
1 2
2 4
3 6
It is not difficult to find the general formula for ¢:

2n ifn>0
pn)=42n|+1 ifn<0
1 ifn=0.

We leave it to the reader to check that ¢ is bijective - it is not difficult.

Not let us turn to Q. Any number in Q can be written in a unique way as g where p € Z
and ¢ € N have no common divisor (this last statement means, for instance, that we would
write % and not %). By sending % to (p,q) € Z x N, we have actually defined an injection
L from Q to Z x N. By proposition 2.4.4, Z x N is countable. Thus Q is at most countable,
since we have an injection from Q into a countable set. Since Q is certainly not finite, it
must be countable by proposition 2.4.3.

Lcheck that you see why the map % — (p, q) is injective
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Define functions on R with values in R. (i) A function that is not left invertible;
(ii) A function that is not right invertible. Show that the given functions have their
respective properties.

Solution. i) This is, by the lecture notes, the same as finding a function that is not
injective. The function f defined by f(x) = 22 is such a function. It is not injective, since
f(=1) = f(1) = 1. ii) We need to find a function that is not surjective. The same function
as before will actually work, since its image contains no negative values. A slightly more
interesting example is the function x — e, which is injective yet not surjective.

Given the linear mapping 7 : R? — R? given by T' = Ax with

-3 —4

a) Show that the matrix

1{-11 —10 16
-1 =
A7 = 9( 7 8 11)

induces a left inverse Tfl of T.
This left inverse is not unique. Show that

1(0 -1 6
20 1 —4

b) Turn this example into one for right inverses. Concretely, find a mapping
S : R? — R? that is based on the mapping 7" and give a right inverse for this

mapping.

gives another left inverse.

Solution.

a) Al_1 "induces a left inverse Tl_1 of T" if we define Tl_ly = Al_ly for y € R3. To check
that this is indeed a left inverse, we need to check that TflTa: = z for any € R?. By
the definitions of the mappings, we need to check that Al_lAy =y for any y € R3, or,
equivalently, that Al_lA is the identity matrix:

-3 —4
1{-11 —10 16 1{9 0 1 0

_]_ —— —— —

A A‘9< 7 8 11) ‘11 (13 9(0 9) (0 1)'

Similarly we can show that the other matrix gives a left inverse, since

1(0 -1 6 _43_64_120_10
2\0 1 =) ;] 2\0 2 \0 1)
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b) The simplest way of finding such an operator S and a right inverse S, ! is to exploit
some properties of the transpose of matrices. We know from linear algebra that if X and
Y are matrices such that the matrix product XY is defined, then (XY)” = Y7 X7 In the
previous problem we found that AflA = I, where I denotes the identity matrix. Taking
the transpose we find that I = I7 = (4;'A)T = AT(A;1)T. Hence, if we define S to be
the mapping induced by A, we see that the mapping induced by (Al_l)T is a right inverse
of this S.
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