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Exercise set 2

Please justify your answers! The most important part is how you arrive at an answer,
not the answer itself.

1 a) Determine the following numbers and decide in each case whether "supre-
mum" can be replaced by "maximum":
1. supx∈(0,∞)

1
x2 ;

2. supx∈R e
−2|x|;

3. supn∈N
n2+3
n2+1 ;

4. supn∈N(−1)n n+3
n2+1 .

b) Determine the following numbers and decide in each case whether "infi-
mum" can be replaced by "minimum":
1. infx∈(0,∞)

1
x2 ;

2. infx∈R e
−2|x|;

3. infn∈N
n2+3
n2+1 ;

4. infn∈N(−1)n n+3
n2+1 .

Solution. a) In general, to show that a is the supremum of a set, we need to show
that a is an upper bound for the set and that there is no smaller upper bound for the
set.

1. This supremum is clearly ∞, since the supremum is an upper bound and 1
x2

grows arbitrarily large1 when x approaches zero. There is clearly no x ∈ (0,∞)
such that 1/x2 =∞, so we cannot replace supremum with a maximum.

2. The function e−2|x| decreases when |x| increases - one might for instance consider
the derivative or graph of the function to see this. Hence e−2|x| is never larger
than its value in x = 0, which is 1. Therefore 1 is an upper bound, and since
e0 = 1 it is clearly the least upper bound. This supremum could be replaced
by a maximum, since 1 = e0.

1Read: “as large as you like”. Norsk: vilkårlig stor
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3. The expression n2+3
n2+1 decreases as n increases, this is perhaps most apparent

after writing n2+3
n2+1 = 1 + 2

n2+1 . Hence it is never larger than its value at n = 1,
which is 4

2 = 2. Hence the supremum is 2, and could be replaced by a maximum
as it is obtained for the value n = 1.

4. The expression n+3
n2+1 also clearly decreases when n increases, since n2 grows

faster than n. Hence the supremum of (−1)n n+3
n2+1 is the first positive term in

the sequence (the greatest absolute value is obtained for n = 1, but then the
expression is negative!). The first positive term is n = 2, hence the supremum
(which can be replaced by a maximum) is 2+3

5 = 1

b) In general, to show that b is the infinum of a set, we need to show that b is a
lower bound for the set and that there is no greater lower bound for the set.

1. 1
x2 is always greater than 0, hence 0 is a lower bound. On the other hand 1

x2

becomes arbitrarily small when x→∞, so 0 is the greatest lower bound. The
supremum cannot be replaced by a minimum, since there is no x ∈ (0,∞) such
that 1/x2 = 0.

2. The same reasoning as above shows that 0 is the infinum, and that it cannot
be replaced by a minimum: e−2|x| is always greater than zero, but becomes
arbitrarily small as |x| → ∞.

3. As we discussed in part 3. of a), the expression n2+3
n2+1 is decreasing when n

increases. It is also easy to see that the limit lim
n→∞

n2+3
n2+1 = 1 (just apply the

usual techniques!). Since n2+3
n2+1 is a decreasing sequence converging to 1, we

must conclude that the infinum is 1. It cannot be replaced by a minimum, as
there is no value n ∈ N such that n2+3

n2+1 = 1 (just try to solve this equation if
you do not believe me!).
This solution was rather short - for the benefit of the reader we show how to
make it painfully precise. To show that 1 is the infinum, we need to show that
1 is a lower bound for the set, and that it is the greatest lower bound. Clearly
1 is a lower bound, since n2+3

n2+1 > 1 for every n ∈ N. After all, the nominator
is clearly greater than the denominator! Could there possibly exist a greater
upper bound than 1 – i.e. a b ∈ R such that b > 1 and n2+3

n2+1 ≥ b for any
n ∈ N? To show that this is not possible, we will use that lim

n→∞
n2+3
n2+1 = 1. By

the definition of the limit, this means that for every ε > 0 there exists N ∈ N
such that n2+3

n2+1 − 1 < ε 2. If we now let ε = b− 1, this says that we can find a
Nb ∈ N such that n2+3

n2+1 − 1 < b− 1 for n ≥ Nb. Now move the −1 to the right
side:

n2 + 3
n2 + 1 < 1 + b− 1 = b.

2Strictly speaking we should have absolute values on the left side here, but we know that the
fraction always exceeds 1
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It follows that b cannot be a lower bound, since N2
b +3

N2
b

+1 < b. Hence 1 is the
infinum.

4. As we observed in a), the expression n+3
n2+1 is decreasing. Since the sign of (−1)n

is alternatively positive and negative, the smallest value of (−1)n n+3
n2+1 must be

an n where (−1)n is negative, and it must be the smallest such n since n+3
n2+1 is

decreasing. In this case, we clearly have that the infinum, and the minimum,
is the value obtained for n = 1, namely (−1)1+3

1+1 = −2.

2 Let A be bounded above. Show that the supremum of A is unique.

Solution: First a general hint: to show that there is a unique object satisfying some
property, you often assume that you have two such objects, and prove that they
must be equal.
Assume that the supremum of A is not unique, in other words we have two numbers
m and m′ such that both m and m′ are least upper bounds for A and m 6= m′.
In particular m is an upper bound, and since m′ is a least upper bound, we must
have m′ ≤ m. Similarly m′ is an upper bound and m is a least upper bound, hence
m ≤ m′. Of course, these two inequalities together imply that m = m′, hence
our assumption m 6= m′ is contradicted – in words, there cannot be two different
supremums, showing that the supremum is unique.

3 Let {Xi}i∈I be a collection of subspaces of a vector space X. Show that the
intersection ∩i∈IXi is a subspace of X.

Solution To check that ∩i∈IXi is a subspace, we need to check that a+λb ∈ ∩i∈IXi

whenever a, b ∈ ∩i∈IXi and λ a scalar – in words, the set ∩i∈IXi must be closed
under finite linear combinations. To check that a+ λb ∈ ∩i∈IXi, we need to check
that a+ λb ∈ Xi for any i ∈ I (this is just the definition of ∩).

Since a, b ∈ ∩i∈IXi, we have that a, b ∈ Xi for any i ∈ I, again by the definition of
∩. Since Xi is a subspace, we must have a+ λb ∈ Xi for any i ∈ I, which is what we
needed to show.

4 Let X be a vector space.

1. Prove that the additive inverse is unique (meaning for any x ∈ X there
exists a unique vector y ∈ X such that x+ y = 0; we denote the additive
inverse of x by −x.)

2. Show that for every x ∈ X we have (−1)x = −x. In words multiplication
by the scalar −1 gives the additive inverse of a vector.

September 4, 2017 Page 3 of 5



Exercise set 2

Solution. 1) Once again we need to prove that some object is unique, and as before
we start by assuming that we have two objects satisfying the property. In this case
we assume that there are two elements y and y′ in X such that x + y = 0 and
x+ y′ = 0 – we want to show that y = y′.

Start with the equation x + y = 0. Then add y′ to both sides of the equation to
obtain y′ + x + y = y′ + 0 = y′. By the assumption on y′, y′ + x = 0. Hence
y′ = y′ + x+ y = (y′ + x) + y = 0 + y = y.

2. −x is by definition the unique vector such that x+ (−x) = 0, so we need to show
that x + (−1)x = 0. By an axiom for vector spaces, x = 1x, and another axiom
(distributivity) then allows us to show that x+ (−1)x = 1x+ (−1)x = (1− 1)x = 0x.
Hence it only remains to show that 0x = 0 (note that the 0 one the left side is a
scalar, and 0 on the right side a vector). This seems rather obvious, but still requires
a proof. In fact, x+ 0x = 1x+ 0x = (1 + 0)x = x, and if we add −x to both sides of
this equality we find that −x+ x+ 0x = −x+ x = 0, hence 0x = 0.

5 Let X be a vector space and T a linear mapping T : X → X.

1. Show that the range of T is a subspace of X.
2. Let D be the differentiation operator Df(x) = f ′(x). Determine the kernel

and the range of Tf = f ′ − 3f for f ∈ C(1)(R), the space of continously
differentiable functions on R.

Solution. 1) Assume that y, y′ ∈ X are elements of the range of T , which by
definition means that there are x, x′ ∈ X with Tx = y and Tx′ = y′. To show that
the range of T is a subspace, we need to show that y + λy′ is in the range of T for
any scalar λ. This is straightforward to show using the linearity of T :

y + λy′ = T (x) + λT (x′)
= T (x) + T (λ)x′)
= T (x+ λx′).

Since this shows that y + λy′ is the image of x+ λx′ under T , y + λy′ belongs to the
range of T .

We also need to show that 0 is in the range of T . This is clear, since T (0) = 0.

2) The kernel of T is the set of functions f such that Tf = f ′ − 3f = 0. This is
a simple, separable differential equation for f , which one easily solves to find that
f = Ce3t where C ∈ R is some constant. Thus the kernel of T is the subspace
{Ce3t : C ∈ R}, in other words the subspace spanned by e3t. The range of T is the
set of functions of the form f ′ − 3f for f ∈ C(1)(R). We claim that T is surjective,
and to prove this we need, for every g ∈ C(R), to find f ∈ C(1)(R) that solves
f ′ − 3f = g. Now, this is a first order linear differential equation, and you know how
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to solve such an equation from earlier courses. If one uses the theory of integrating
factors, one finds that the integrating factor is −3x, and the solution to the equation
is

f(x) = e3x
∫ x

0
e−3tg(t) dt.

This is f is such that Tf = f ′ − 3f = g, hence T is surjective.
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