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Before we start the solutions, recall the definition of a norm: A normed
space (X, ‖.‖) is a vector space X together with a function ‖.‖ : X → R, the norm
on X, such that for all x, y ∈ X and λ ∈ R:

(1) Positivity: 0 ≤ ‖x‖ <∞ and ‖x‖ = 0 if and only if x = 0;

(2) Homogeneity: ‖λx‖ = |λ|‖x‖;

(3) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

I would advice you to pay attention to the last part of the positivity
axiom - it states in particular that ‖x‖ = 0 must imply that x = 0.

1 a) Determine if the following expressions are norms for R3.
1. f(x1, x2, x3) = |x1|+ |x2|;
2. f(x1, x2, x3) = |x1|+ (|x2|2 + |x3|2)1/2;
3. f(x1, x2, x3) = (w1|x1|3 + w2|x2|2 + w3|x3|)1/2 for some positive real

numbers w1, w2, w3.

b) Determine ‖z‖1, ‖z‖2 and ‖z‖∞ for z = (1+ i, 1− i) and z = (eiπ/2, e3iπ/2)
in C2.

Solution. a)

1. This is not a norm, since f(0, 0, a) = 0 for any a ∈ R. Hence we do not have
‖x‖ = 0 if and only if x = 0, and positivity is not satisfied.

2. This function defines a norm. Let us check the axioms.

• Positivity: Clearly f(x1, x2, x3) ≥ 0 for any (x1, x2, x3) ∈ R3 and f(0) = 0.
If f(x1, x2, x3) = 0, then |x1| + (|x2|2 + |x3|2)1/2 = 0, and since this is a
sum of positive numbers each summand must be zero. Hence x1 = 0 and
(|x2|2 + |x3|2)1/2 = 0, and by a similar argument we then get x2 = x3 = 0.
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• Homogeneity: If λ ∈ R, we have f(λx1, λx2, λx3) = |λx1| + (|λx2|2 +
|λx3|2)1/2 = |λ||x1|+(|λ|2|x2|2+|λ|2|x3|2)1/2 = |λ|

(
|x1|+ (|x2|2 + |x3|2)1/2

)
.

• Triangle inequality: We know from earlier courses and the lecture notes
that |x1 + y1| ≤ |x1| + |y1| and (|x2 + y2|2 + |x3 + y3|2)1/2 ≤ (|x2|2 +
|x3|2)1/2 + (|y2|2 + |y3|2)1/2. These are just two instances of the usual
triangle inequality in Rn for n = 1, 2. Combining these, we find for
(x1, x2, x3), (y1, y2, y3) ∈ R3:

f(x1 + y1, x2 + y2, x3 + y3) = |x1 + y1|+ (|x2 + y2|2 + |x3 + y3|2)1/2

≤ |x1|+ |y1|+ (|x2|2 + |x3|2)1/2 + (|y2|2 + |y3|2)1/2

= f(x1, x2, x3) + f(y1, y2, y3).

3. This f fails to satisfy the homogeneity axiom. For instance, we have that
f(0, 0, 3 · 2) =

√
w3|3 · 1| =

√
3
√
w3|1| =

√
3√ω3. This is not equal to

3f(0, 0, 1) = 3√ω3.

b)

1. If z = (1+i, 1−i), then ‖z‖1 = |1+i|+|1−i| = 2
√

2 (I trust that you are able to
calculate |1+i| and similar expressions). Similarly ‖z‖2 =

√
|1 + i|2 + |1− i|2 =√

2 + 2 = 2. Finally ‖z‖∞ = sup{|i+ 1|, |1− i|} = sup{
√

2,
√

2} =
√

2.

2. If z = (eiπ/2, e3iπ/2), then ‖z‖1 = |eiπ/2| + |e3iπ/2| = 2. Similarly ‖z‖2 =√
|eiπ/2|2 + |e3iπ/2|2 =

√
2 =

√
2. Finally ‖z‖∞ = sup{|eiπ/2|, |e3iπ/2|} =

sup{1, 1} = 1.

2 Draw the set {(x1, x2) ∈ R2| |x1|1/2 + |x2|1/2 ≤ 1} and determine if it is
convex. Discuss the link between the aforementioned set and the property of
f(x1, x2) := |x1|1/2 + |x2|1/2 being a norm for R2.

Solution. The set is drawn in figure 1. This set is clearly not convex - a straight
line from (1, 0) to (1, 1) is not contained in the set. This shows that f does not define
a norm. If f did define a norm, then the set pictured would be the closed unit ball
(i.e. set of points such that ‖x‖ ≤ 1) in that norm. However, in a normed space the
closed unit ball must always be convex, by lemma 3.1 of the lecture notes.

3 Let X be a vector space and ‖.‖a and ‖.‖b norms on x. Show that ‖x‖ :=
(‖x‖2

a + ‖x‖2
b)1/2 defines a norm on X.

Try to define a variant of this norm for p 6= 2 and contemplate about a possible
proof of this statement.
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Figure 1: A drawing of the set in exercise 2.

Solution.
The case p=2

‖x‖ := (‖x‖2
a + ‖x‖2

b)1/2 is a norm, because

1. Positivity: ‖x‖ = 0 if and only if ‖x‖a = 0 and ‖x‖b = 0, which is the case
only if x = 0.

2. Homogeneity: ‖λx‖ = (‖λx‖2
a+‖‖ax‖2

b)1/2 = (λ2‖x‖2
a+λ2‖x‖2

b)1/2 = |λ|(‖x‖2
a+

‖x‖2
b)1/2 = |λ|‖x‖.

3. Triangle inequaliy: By definition and the triangle inequalities for ‖ · ‖a and
‖ · ‖b

‖x+ y‖ = (‖x+ y‖2
a + ‖x+ y‖2

b)1/2

≤
[
(‖x‖a + ‖y‖a)2 + (‖x‖b + ‖y‖b)2

]1/2
.

By the Minkowski inequality for p = 2, we then find that[
(‖x‖a + ‖y‖a)2 + (‖x‖b + ‖y‖b)2

]1/2
≤ (‖x‖2

a + ‖x‖2
b)1/2 + (‖y‖2

a + ‖y‖2
b)1/2

= ‖x‖+ ‖y‖.

Extension to p 6= 2
The natural extension of this norm for p 6= 2 is

‖x‖p := (‖x‖pa + ‖x‖pb)1/p

for p <∞, and
‖x‖∞ := max{‖x‖a, ‖x‖b}

September 15, 2017 Page 3 of 7



Exercise set 3: Solutions

for p =∞. The reason why this is the natural extension, is that we define our norms
to be the `p-norms of the pair (‖x‖a, ‖x‖b) ∈ R2. Hopefully we will then be able to
use the triangle inequality for the `p-spaces to deduce the triangle inequality for our
new norms.

We need to check that ‖ · ‖p and ‖ · ‖∞ satisfy the three axioms for being a norm.
Let us start with ‖ · ‖p.

1. Positivity: Clearly ‖x‖p is positive, since ‖x‖a and ‖x‖b are positive numbers,
and similarly ‖0‖p = 0 since ‖0‖a = 0 = ‖0‖b. If ‖x‖p = 0, then ‖x‖pa+‖x‖

p
b = 0,

and since this is a sum of positive numbers each summand must be 0. In
particular ‖x‖a = 0, which implies that x = 0 since ‖ · ‖a is a norm.

2. Homegeneity: For λ a scalar, we have ‖λx‖p = (‖λx‖pa+‖λx‖
p
b)1/p = (|λ|p‖x‖pa+

|λ|p‖x‖pb)1/p = |λ|‖x‖p, where the main step is to use that ‖ · ‖a and ‖ · ‖b are
homogeneous by assumption.

3. Triangle inequality: Let x, y ∈ X. We find that

‖x+ y‖p = (‖x+ y‖pa + ‖x+ y‖pb)1/p

≤ [(‖x‖a + ‖y‖a)p + (‖x‖b + ‖y‖b)p]1/p

by using the triangle inequalities for ‖ · ‖a and ‖ · ‖b. Now recall the Minkowski
inequality for R2 (which is also the triangle inequality on R2 with the `p norm).
It says that if (a, b), (c, d) ∈ R2, then

‖(a, b) + (c, d)‖`p = [(|a+ c|)p + (|b+ d|)p]1/p

≤ (|a|p + |b|p)1/p + (|c|p + |d|p)1/p.

Let us now pick a = ‖x‖a, b = ‖y‖a, c = ‖x‖b and d = ‖y‖b. The Minkowski
inequality then says that

[(‖x‖a + ‖y‖a)p + (‖x‖b + ‖y‖b)p]1/p ≤ (‖x‖pa + ‖x‖pb)1/p + (‖y‖pa + ‖y‖pb)1/p

= ‖x‖p + ‖y‖p.

Now consider ‖ · ‖∞.

1. Positivity: Since ‖x‖∞ is the maximum of two positive numbers, it must be
positive. Also, ‖0‖∞ = max{0, 0} = 0. Finally, if ‖x‖∞ = 0, then in particular
‖x‖a = 0, and since ‖ · ‖a is a norm we must have x = 0.

2. Homogeneity: If λ is a scalar, we have that

‖λx‖∞ = max{‖λx‖a, ‖λx‖b}
= max{|λ|‖x‖a, |λ|‖x‖b}
= |λ|max{‖x‖a, ‖x‖b} = λ‖x‖∞.
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3. Triangle inequality:

‖x+ y‖∞ = max{‖x+ y‖a, ‖x+ y‖b}
≤ max{‖x‖a + ‖y‖a, ‖x‖b + ‖y‖b}
≤ max{‖x‖a, ‖x‖b}+ max{‖y‖a, ‖y‖b} = ‖x‖∞ + ‖y‖∞.

The first inequality is a result of the triangle inequality for the norms ‖ · ‖a
and ‖ · ‖b. The second inequality is a property of taking the maximum of sums
of real number - make sure that you see why we need an inequality rather than
an equality.

4 Let Mn(R) be the vector space of n× n matrices. Define for A ∈Mn(R) the
function ‖A‖2 = (∑n

i,j=1 |aij|2)1/2. Show that ‖.‖2 is a norm on Mn(R). The
trace of a matrix A ∈ Mn(R) is defined as the sum of its diagonal elements,
tr(A) = a11 + · · ·+ ann. Prove that ‖A‖2

2 = tr(ATA). If the general case is to
difficult, try to do it for n = 3.

Solution. We first show that ‖ · ‖2 defines a norm on Mn(R). Intuitively, this space
is exactly the same as Rn2 with the `2-norm. Let us check the axioms:

1. Positivity: ‖A‖2 is obviously positive for any matrix A. Also, the zero element
ofMn(R) is the zero matrix, i.e. the matrix 0 where all entries are zero. Clearly
‖0‖2 = (∑n

i,j=1 |0|2)1/2 = 0. If ‖A‖2 = 0 for some matrix A, we have by the
definition that ∑n

i,j=1 |aij|2 = 0. Since this is a sum of positive numbers |aij|
whose sum is 0, we must have that every aij = 0, hence A = 0 - the zero
matrix.

2. Homogeneity: Let λ ∈ R, A ∈ Mn(R). Then λA is defined by multiplying
every entry of A by λ, so that the entries of λA are λaij. We then find that

‖λA‖2 = (
n∑

i,j=1
|λaij|2)1/2

= (
n∑

i,j=1
|λ|2|aij|2)1/2

= |λ|(
n∑

i,j=1
|aij|2)1/2 = |λ|‖A‖2.

3. Triangle inequality: Let A,B ∈Mn(R), and let aij be the entries of A and bij
the entries of B. Then the entries of A+B are aij + bij (adding two matrices
does of course correspond to adding each entry, as you know!). Hence, by using
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the triangle inequality for Rn2 in the `2-norm:

‖A+B‖2 = (
n∑

i,j=1
|aij + bij|2)1/2

≤ (
n∑

i,j=1
|aij|2)1/2 + (

n∑
i,j=1
|bij|2)1/2 = ‖A‖2 + ‖B‖2.

We now move on to show that ‖A‖2
2 = tr(ATA). Since tr(ATA) is the sum of the

diagonal entries of ATA, we start by studying these diagonal entries. Let us consider
the multiplication of two arbitrary matrices A and B. If we write C = BA, we
know that the entry cij is the dot product of row i of B with column j of A 1 -
cij = ∑n

k=1 bikak,j. In our case we have B = AT , and we are interested in the diagonal
entries cii of the product ATA. As we discussed, cii is the dot product of row i of
AT with column i of A. But by definition row i of AT is column i of A - hence
cii is actually just the dot product of column i of A with itself! In detail, we have
cii = ∑n

j=1 a
2
ji. If we now sum all the diagonal entries cii, we get that

tr(ATA) =
n∑
i=1

cii

=
n∑

i,j=1
a2
ji

= ‖A‖2
2.

Hence
√

tr(ATA) = ‖A‖2.
If this seemed a bit too abstract, let us show the reasoning on 3×3-matrices. Consider

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
Then ‖A‖2 =

√∑3
i,j=1 a

2
ij. Clearly

AT =

a11 a21 a31
a12 a22 a32
a13 a23 a33

 .
If we multiply these matrices (focusing on the diagonal), we get that

ATA =

a
2
11 + a2

21 + a2
31

a2
12 + a2

22 + a2
32

a2
13 + a2

23 + a2
33

 .
Clearly, if we sum over all the diagonal entries of ATA, we will obtain the sum∑3
i,j=1 a

2
ij, which is exactly ‖A‖2

2.
1There is nothing mysterious about this, it is the way you were taught to multiply matrices.
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5 Let (X, ‖.‖) be a normed vector space. Show that for any x, y ∈ X we have

|‖x‖ − ‖y‖| ≤ ‖x− y‖.

Solution. An inequality with absolute values, such as this one, can equivalently be
written as a set of two equations with no absolute values2:

‖x‖ − ‖y‖ ≤ ‖x− y‖
−‖x− y‖ ≤ ‖x‖ − ‖y‖.

The first of these inequalities follows from writing x = y + (x − y) and using the
triangle inequality:

‖x‖ = ‖y + (x− y)‖ ≤ ‖y‖+ ‖x− y‖.

If we subtract ‖y‖ from both sides, we end up with ‖x‖−‖y‖ ≤ ‖x− y‖. The second
inequality is proved similarly, by writing y = x + (y − x) and using the triangle
inequality:

‖y‖ = ‖x+ (y − x)‖ ≤ ‖x‖+ ‖x− y‖.

Here we use that ‖y − x‖ = ‖x− y‖. Subtracting ‖y‖ and ‖x− y‖ from both sides,
we have that −‖x−y‖ ≤ ‖x‖−‖y‖. We have proved both inequalities, and therefore
proved the original inequality with the absolute value.

2This should be known from Matte 1 or equivalent courses, but make sure that you understand
it.
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