Norwegian University of Science and Technology
Department of Mathematical

Before we start the solutions, recall the definition of a norm: A normed space $(X,\|\cdot\|)$ is a vector space X together with a function $\|\|:. X \rightarrow \mathbb{R}$, the norm on X, such that for all $x, y \in X$ and $\lambda \in \mathbb{R}$:
(1) Positivity: $0 \leq\|x\|<\infty$ and $\|x\|=0$ if and only if $x=0$;
(2) Homogeneity: $\|\lambda x\|=|\lambda|\|x\|$;
(3) Triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$.

I would advice you to pay attention to the last part of the positivity axiom - it states in particular that $\|x\|=0$ must imply that $x=0$.

1 a) Determine if the following expressions are norms for \mathbb{R}^{3}.

1. $f\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{1}\right|+\left|x_{2}\right| ;$
2. $f\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{1}\right|+\left(\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}\right)^{1 / 2}$;
3. $f\left(x_{1}, x_{2}, x_{3}\right)=\left(w_{1}\left|x_{1}\right|^{3}+w_{2}\left|x_{2}\right|^{2}+w_{3}\left|x_{3}\right|\right)^{1 / 2}$ for some positive real numbers w_{1}, w_{2}, w_{3}.
b) Determine $\|z\|_{1},\|z\|_{2}$ and $\|z\|_{\infty}$ for $z=(1+i, 1-i)$ and $z=\left(e^{i \pi / 2}, e^{3 i \pi / 2}\right)$ in \mathbb{C}^{2}.

Solution. a)

1. This is not a norm, since $f(0,0, a)=0$ for any $a \in \mathbb{R}$. Hence we do not have $\|x\|=0$ if and only if $x=0$, and positivity is not satisfied.
2. This function defines a norm. Let us check the axioms.

- Positivity: Clearly $f\left(x_{1}, x_{2}, x_{3}\right) \geq 0$ for any $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ and $f(0)=0$. If $f\left(x_{1}, x_{2}, x_{3}\right)=0$, then $\left|x_{1}\right|+\left(\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}\right)^{1 / 2}=0$, and since this is a sum of positive numbers each summand must be zero. Hence $x_{1}=0$ and $\left(\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}\right)^{1 / 2}=0$, and by a similar argument we then get $x_{2}=x_{3}=0$.
- Homogeneity: If $\lambda \in \mathbb{R}$, we have $f\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right)=\left|\lambda x_{1}\right|+\left(\left|\lambda x_{2}\right|^{2}+\right.$ $\left.\left|\lambda x_{3}\right|^{2}\right)^{1 / 2}=|\lambda|\left|x_{1}\right|+\left(|\lambda|^{2}\left|x_{2}\right|^{2}+|\lambda|^{2}\left|x_{3}\right|^{2}\right)^{1 / 2}=|\lambda|\left(\left|x_{1}\right|+\left(\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}\right)^{1 / 2}\right)$
- Triangle inequality: We know from earlier courses and the lecture notes that $\left|x_{1}+y_{1}\right| \leq\left|x_{1}\right|+\left|y_{1}\right|$ and $\left(\left|x_{2}+y_{2}\right|^{2}+\left|x_{3}+y_{3}\right|^{2}\right)^{1 / 2} \leq\left(\left|x_{2}\right|^{2}+\right.$ $\left.\left|x_{3}\right|^{2}\right)^{1 / 2}+\left(\left|y_{2}\right|^{2}+\left|y_{3}\right|^{2}\right)^{1 / 2}$. These are just two instances of the usual triangle inequality in \mathbb{R}^{n} for $n=1,2$. Combining these, we find for $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}:$

$$
\begin{aligned}
f\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) & =\left|x_{1}+y_{1}\right|+\left(\left|x_{2}+y_{2}\right|^{2}+\left|x_{3}+y_{3}\right|^{2}\right)^{1 / 2} \\
& \leq\left|x_{1}\right|+\left|y_{1}\right|+\left(\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}\right)^{1 / 2}+\left(\left|y_{2}\right|^{2}+\left|y_{3}\right|^{2}\right)^{1 / 2} \\
& =f\left(x_{1}, x_{2}, x_{3}\right)+f\left(y_{1}, y_{2}, y_{3}\right) .
\end{aligned}
$$

3. This f fails to satisfy the homogeneity axiom. For instance, we have that $f(0,0,3 \cdot 2)=\sqrt{w_{3}|3 \cdot 1|}=\sqrt{3} \sqrt{w_{3}|1|}=\sqrt{3} \sqrt{\omega_{3}}$. This is not equal to $3 f(0,0,1)=3 \sqrt{\omega_{3}}$.
b)
4. If $z=(1+i, 1-i)$, then $\|z\|_{1}=|1+i|+|1-i|=2 \sqrt{2}$ (I trust that you are able to calculate $|1+i|$ and similar expressions). Similarly $\|z\|_{2}=\sqrt{|1+i|^{2}+|1-i|^{2}}=$ $\sqrt{2+2}=2$. Finally $\|z\|_{\infty}=\sup \{|i+1|,|1-i|\}=\sup \{\sqrt{2}, \sqrt{2}\}=\sqrt{2}$.
5. If $z=\left(e^{i \pi / 2}, e^{3 i \pi / 2}\right)$, then $\|z\|_{1}=\left|e^{i \pi / 2}\right|+\left|e^{3 i \pi / 2}\right|=2$. Similarly $\|z\|_{2}=$ $\sqrt{\left|e^{i \pi / 2}\right|^{2}+\left|e^{3 i \pi / 2}\right|^{2}}=\sqrt{2}=\sqrt{2}$. Finally $\|z\|_{\infty}=\sup \left\{\left|e^{i \pi / 2}\right|,\left|e^{3 i \pi / 2}\right|\right\}=$ $\sup \{1,1\}=1$.

2 Draw the set $\left\{\left.\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}|\quad| x_{1}\right|^{1 / 2}+\left|x_{2}\right|^{1 / 2} \leq 1\right\}$ and determine if it is convex. Discuss the link between the aforementioned set and the property of $f\left(x_{1}, x_{2}\right):=\left|x_{1}\right|^{1 / 2}+\left|x_{2}\right|^{1 / 2}$ being a norm for \mathbb{R}^{2}.

Solution. The set is drawn in figure 1. This set is clearly not convex - a straight line from $(1,0)$ to $(1,1)$ is not contained in the set. This shows that f does not define a norm. If f did define a norm, then the set pictured would be the closed unit ball (i.e. set of points such that $\|x\| \leq 1$) in that norm. However, in a normed space the closed unit ball must always be convex, by lemma 3.1 of the lecture notes.

3 Let X be a vector space and $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ norms on x. Show that $\|x\|:=$ $\left(\|x\|_{a}^{2}+\|x\|_{b}^{2}\right)^{1 / 2}$ defines a norm on X.
Try to define a variant of this norm for $p \neq 2$ and contemplate about a possible proof of this statement.

Figure 1: A drawing of the set in exercise 2.

Solution.

The case $\mathrm{p}=2$

$\|x\|:=\left(\|x\|_{a}^{2}+\|x\|_{b}^{2}\right)^{1 / 2}$ is a norm, because

1. Positivity: $\|x\|=0$ if and only if $\|x\|_{a}=0$ and $\|x\|_{b}=0$, which is the case only if $x=0$.
2. Homogeneity: $\|\lambda x\|=\left(\|\lambda x\|_{a}^{2}+\| \| a x \|_{b}^{2}\right)^{1 / 2}=\left(\lambda^{2}\|x\|_{a}^{2}+\lambda^{2}\|x\|_{b}^{2}\right)^{1 / 2}=|\lambda|\left(\|x\|_{a}^{2}+\right.$ $\left.\|x\|_{b}^{2}\right)^{1 / 2}=|\lambda|\|x\|$.
3. Triangle inequaliy: By definition and the triangle inequalities for $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$

$$
\begin{aligned}
\|x+y\| & =\left(\|x+y\|_{a}^{2}+\|x+y\|_{b}^{2}\right)^{1 / 2} \\
& \leq\left[\left(\|x\|_{a}+\|y\|_{a}\right)^{2}+\left(\|x\|_{b}+\|y\|_{b}\right)^{2}\right]^{1 / 2} .
\end{aligned}
$$

By the Minkowski inequality for $p=2$, we then find that

$$
\begin{aligned}
{\left[\left(\|x\|_{a}+\|y\|_{a}\right)^{2}+\left(\|x\|_{b}+\|y\|_{b}\right)^{2}\right]^{1 / 2} } & \leq\left(\|x\|_{a}^{2}+\|x\|_{b}^{2}\right)^{1 / 2}+\left(\|y\|_{a}^{2}+\|y\|_{b}^{2}\right)^{1 / 2} \\
& =\|x\|+\|y\|
\end{aligned}
$$

Extension to $p \neq 2$
The natural extension of this norm for $p \neq 2$ is

$$
\|x\|_{p}:=\left(\|x\|_{a}^{p}+\|x\|_{b}^{p}\right)^{1 / p}
$$

for $p<\infty$, and

$$
\|x\|_{\infty}:=\max \left\{\|x\|_{a},\|x\|_{b}\right\}
$$

for $p=\infty$. The reason why this is the natural extension, is that we define our norms to be the ℓ^{p}-norms of the pair $\left(\|x\|_{a},\|x\|_{b}\right) \in \mathbb{R}^{2}$. Hopefully we will then be able to use the triangle inequality for the ℓ^{p}-spaces to deduce the triangle inequality for our new norms.

We need to check that $\|\cdot\|_{p}$ and $\|\cdot\|_{\infty}$ satisfy the three axioms for being a norm. Let us start with $\|\cdot\|_{p}$.

1. Positivity: Clearly $\|x\|_{p}$ is positive, since $\|x\|_{a}$ and $\|x\|_{b}$ are positive numbers, and similarly $\|0\|_{p}=0$ since $\|0\|_{a}=0=\|0\|_{b}$. If $\|x\|_{p}=0$, then $\|x\|_{a}^{p}+\|x\|_{b}^{p}=0$, and since this is a sum of positive numbers each summand must be 0 . In particular $\|x\|_{a}=0$, which implies that $x=0$ since $\|\cdot\|_{a}$ is a norm.
2. Homegeneity: For λ a scalar, we have $\|\lambda x\|_{p}=\left(\|\lambda x\|_{a}^{p}+\|\lambda x\|_{b}^{p}\right)^{1 / p}=\left(|\lambda|^{p}\|x\|_{a}^{p}+\right.$ $\left.|\lambda|^{p}\|x\|_{b}^{p}\right)^{1 / p}=|\lambda|\|x\|_{p}$, where the main step is to use that $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are homogeneous by assumption.
3. Triangle inequality: Let $x, y \in X$. We find that

$$
\begin{aligned}
\|x+y\|_{p} & =\left(\|x+y\|_{a}^{p}+\|x+y\|_{b}^{p}\right)^{1 / p} \\
& \leq\left[\left(\|x\|_{a}+\|y\|_{a}\right)^{p}+\left(\|x\|_{b}+\|y\|_{b}\right)^{p}\right]^{1 / p}
\end{aligned}
$$

by using the triangle inequalities for $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$. Now recall the Minkowski inequality for \mathbb{R}^{2} (which is also the triangle inequality on \mathbb{R}^{2} with the ℓ^{p} norm). It says that if $(a, b),(c, d) \in \mathbb{R}^{2}$, then

$$
\begin{aligned}
\|(a, b)+(c, d)\|_{\ell^{p}} & =\left[(|a+c|)^{p}+(|b+d|)^{p}\right]^{1 / p} \\
& \leq\left(|a|^{p}+|b|^{p}\right)^{1 / p}+\left(|c|^{p}+|d|^{p}\right)^{1 / p}
\end{aligned}
$$

Let us now pick $a=\|x\|_{a}, b=\|y\|_{a}, c=\|x\|_{b}$ and $d=\|y\|_{b}$. The Minkowski inequality then says that

$$
\begin{aligned}
{\left[\left(\|x\|_{a}+\|y\|_{a}\right)^{p}+\left(\|x\|_{b}+\|y\|_{b}\right)^{p}\right]^{1 / p} } & \leq\left(\|x\|_{a}^{p}+\|x\|_{b}^{p}\right)^{1 / p}+\left(\|y\|_{a}^{p}+\|y\|_{b}^{p}\right)^{1 / p} \\
& =\|x\|_{p}+\|y\|_{p}
\end{aligned}
$$

Now consider $\|\cdot\|_{\infty}$.

1. Positivity: Since $\|x\|_{\infty}$ is the maximum of two positive numbers, it must be positive. Also, $\|0\|_{\infty}=\max \{0,0\}=0$. Finally, if $\|x\|_{\infty}=0$, then in particular $\|x\|_{a}=0$, and since $\|\cdot\|_{a}$ is a norm we must have $x=0$.
2. Homogeneity: If λ is a scalar, we have that

$$
\begin{aligned}
\|\lambda x\|_{\infty} & =\max \left\{\|\lambda x\|_{a},\|\lambda x\|_{b}\right\} \\
& =\max \left\{|\lambda|\|x\|_{a},|\lambda|\|x\|_{b}\right\} \\
& =|\lambda| \max \left\{\|x\|_{a},\|x\|_{b}\right\}=\lambda\|x\|_{\infty} .
\end{aligned}
$$

3. Triangle inequality:

$$
\begin{aligned}
\|x+y\|_{\infty} & =\max \left\{\|x+y\|_{a},\|x+y\|_{b}\right\} \\
& \leq \max \left\{\|x\|_{a}+\|y\|_{a},\|x\|_{b}+\|y\|_{b}\right\} \\
& \leq \max \left\{\|x\|_{a},\|x\|_{b}\right\}+\max \left\{\|y\|_{a},\|y\|_{b}\right\}=\|x\|_{\infty}+\|y\|_{\infty} .
\end{aligned}
$$

The first inequality is a result of the triangle inequality for the norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$. The second inequality is a property of taking the maximum of sums of real number - make sure that you see why we need an inequality rather than an equality.

4 Let $M_{n}(\mathbb{R})$ be the vector space of $n \times n$ matrices. Define for $A \in M_{n}(\mathbb{R})$ the function $\|A\|_{2}=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}$. Show that $\|\cdot\|_{2}$ is a norm on $M_{n}(\mathbb{R})$. The trace of a matrix $A \in M_{n}(\mathbb{R})$ is defined as the sum of its diagonal elements, $\operatorname{tr}(A)=a_{11}+\cdots+a_{n n}$. Prove that $\|A\|_{2}^{2}=\operatorname{tr}\left(A^{T} A\right)$. If the general case is to difficult, try to do it for $n=3$.

Solution. We first show that $\|\cdot\|_{2}$ defines a norm on $M_{n}(\mathbb{R})$. Intuitively, this space is exactly the same as $\mathbb{R}^{n^{2}}$ with the ℓ^{2}-norm. Let us check the axioms:

1. Positivity: $\|A\|_{2}$ is obviously positive for any matrix A. Also, the zero element of $M_{n}(\mathbb{R})$ is the zero matrix, i.e. the matrix 0 where all entries are zero. Clearly $\|0\|_{2}=\left(\sum_{i, j=1}^{n}|0|^{2}\right)^{1 / 2}=0$. If $\|A\|_{2}=0$ for some matrix A, we have by the definition that $\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}=0$. Since this is a sum of positive numbers $\left|a_{i j}\right|$ whose sum is 0 , we must have that every $a_{i j}=0$, hence $A=0$ - the zero matrix.
2. Homogeneity: Let $\lambda \in \mathbb{R}, A \in M_{n}(\mathbb{R})$. Then λA is defined by multiplying every entry of A by λ, so that the entries of λA are $\lambda a_{i j}$. We then find that

$$
\begin{aligned}
\|\lambda A\|_{2} & =\left(\sum_{i, j=1}^{n}\left|\lambda a_{i j}\right|^{2}\right)^{1 / 2} \\
& =\left(\sum_{i, j=1}^{n}|\lambda|^{2}\left|a_{i j}\right|^{2}\right)^{1 / 2} \\
& =|\lambda|\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}=|\lambda|\|A\|_{2} .
\end{aligned}
$$

3. Triangle inequality: Let $A, B \in M_{n}(\mathbb{R})$, and let $a_{i j}$ be the entries of A and $b_{i j}$ the entries of B. Then the entries of $A+B$ are $a_{i j}+b_{i j}$ (adding two matrices does of course correspond to adding each entry, as you know!). Hence, by using
the triangle inequality for $\mathbb{R}^{n^{2}}$ in the ℓ^{2}-norm:

$$
\begin{aligned}
\|A+B\|_{2} & =\left(\sum_{i, j=1}^{n}\left|a_{i j}+b_{i j}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}+\left(\sum_{i, j=1}^{n}\left|b_{i j}\right|^{2}\right)^{1 / 2}=\|A\|_{2}+\|B\|_{2} .
\end{aligned}
$$

We now move on to show that $\|A\|_{2}^{2}=\operatorname{tr}\left(A^{T} A\right)$. Since $\operatorname{tr}\left(A^{T} A\right)$ is the sum of the diagonal entries of $A^{T} A$, we start by studying these diagonal entries. Let us consider the multiplication of two arbitrary matrices A and B. If we write $C=B A$, we know that the entry $c_{i j}$ is the dot product of row i of B with column j of A^{1} $c_{i j}=\sum_{k=1}^{n} b_{i k} a_{k, j}$. In our case we have $B=A^{T}$, and we are interested in the diagonal entries $c_{i i}$ of the product $A^{T} A$. As we discussed, $c_{i i}$ is the dot product of row i of A^{T} with column i of A. But by definition row i of A^{T} is column i of A - hence $c_{i i}$ is actually just the dot product of column i of A with itself! In detail, we have $c_{i i}=\sum_{j=1}^{n} a_{j i}^{2}$. If we now sum all the diagonal entries $c_{i i}$, we get that

$$
\begin{aligned}
\operatorname{tr}\left(A^{T} A\right) & =\sum_{i=1}^{n} c_{i i} \\
& =\sum_{i, j=1}^{n} a_{j i}^{2} \\
& =\|A\|_{2}^{2}
\end{aligned}
$$

Hence $\sqrt{\operatorname{tr}\left(A^{T} A\right)}=\|A\|_{2}$.
If this seemed a bit too abstract, let us show the reasoning on 3×3-matrices. Consider

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Then $\|A\|_{2}=\sqrt{\sum_{i, j=1}^{3} a_{i j}^{2}}$. Clearly

$$
A^{T}=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$$

If we multiply these matrices (focusing on the diagonal), we get that

$$
A^{T} A=\left[\begin{array}{lll}
a_{11}^{2}+a_{21}^{2}+a_{31}^{2} & & \\
& a_{12}^{2}+a_{22}^{2}+a_{32}^{2} & \\
& & a_{13}^{2}+a_{23}^{2}+a_{33}^{2}
\end{array}\right]
$$

Clearly, if we sum over all the diagonal entries of $A^{T} A$, we will obtain the sum $\sum_{i, j=1}^{3} a_{i j}^{2}$, which is exactly $\|A\|_{2}^{2}$.

[^0]5 Let $(X,\|\|$.$) be a normed vector space. Show that for any x, y \in X$ we have

$$
|\|x\|-\|y\|| \leq\|x-y\| .
$$

Solution. An inequality with absolute values, such as this one, can equivalently be written as a set of two equations with no absolute values ${ }^{2}$:

$$
\begin{aligned}
\|x\|-\|y\| & \leq\|x-y\| \\
-\|x-y\| & \leq\|x\|-\|y\| .
\end{aligned}
$$

The first of these inequalities follows from writing $x=y+(x-y)$ and using the triangle inequality:

$$
\|x\|=\|y+(x-y)\| \leq\|y\|+\|x-y\| .
$$

If we subtract $\|y\|$ from both sides, we end up with $\|x\|-\|y\| \leq\|x-y\|$. The second inequality is proved similarly, by writing $y=x+(y-x)$ and using the triangle inequality:

$$
\|y\|=\|x+(y-x)\| \leq\|x\|+\|x-y\| .
$$

Here we use that $\|y-x\|=\|x-y\|$. Subtracting $\|y\|$ and $\|x-y\|$ from both sides, we have that $-\|x-y\| \leq\|x\|-\|y\|$. We have proved both inequalities, and therefore proved the original inequality with the absolute value.

[^1]
[^0]: ${ }^{1}$ There is nothing mysterious about this, it is the way you were taught to multiply matrices.

[^1]: ${ }^{2}$ This should be known from Matte 1 or equivalent courses, but make sure that you understand it.

