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1 Show that the sets U, V µ P4, the space of polynomials of degree at most 4,
defined by

U := {p œ P4 : p(≠1) = p(1) = 0},

V := {p œ P4 : p(1) = p(2) = p(3) = 0}

are subspaces of P4 and determine the subspace U fl V .

Solution We show that U is a subspace of P4.

Let p1, . . . , pn œ U and ⁄1, . . . , ⁄n œ R.

Then pk(≠1) = pk(1) = 0 for all indices k = 1, . . . , n.

Consider the linear combination p = ⁄1p1 + . . . + ⁄npn. Then clearly

p(≠1) = ⁄1p1(1) + . . . + ⁄npn(1) = ⁄1 · 0 + . . . ⁄n · 0 = 0,

which shows that p(≠1) = 0. Similarly, p(1) = 0.

Therefore, p œ U , so U is a subspace of P4.

The same kind of argument shows that V is a subspace.

Turning to U fl V , we clearly have

U fl V = {p œ P4 : p(≠1) = p(1) = p(2) = p(3) = 0}.

This is the set of all real polynomials of degree at most 4 with exactly 4 roots:
≠1, 1, 2, 3.

Let p0 := (x + 1)(x ≠ 1)(x ≠ 2)(x ≠ 3).

Then U fl V = {⁄ p0 : ⁄ œ R}.
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2 Prove that (l

Œ
(R), Î·ÎŒ) is a normed space, where for any bounded sequence

x = (xn) œ l

Œ
(R) we define

ÎxÎŒ := sup

nœN
|xn|.

Is this norm associated with an inner product?

Solution. We verify the three axioms of the norm. Let x = (xn) œ l

Œ
(R).

(i) Since |a| Ø 0 for all real numbers a,

ÎxÎŒ = sup

nœN
|xn| Ø 0.

Moreover, if ÎxÎŒ = supnœN |xn| = 0, then |xn| = 0 for all n œ N, hence xn = 0

for all n œ N. This shows that x = (xn) = (0), so x is the null vector in l

Œ
(R).

(ii) Let ⁄ œ R. Then

Î⁄ xÎŒ = sup

nœN
|⁄ xn| = sup

nœN
|⁄| |xn| = |⁄| sup

nœN
|xn| = |⁄| ÎxÎŒ.

Note that we used the following property of the supremum: if A µ R and c Ø 0,
then

sup(cA) = c sup(A).

(iii) Let x = (xn) and y = (yn) œ l

Œ
(R). Since for any two real numbers a and b,

|a + b| Æ |a| + |b|, we have

Îx + yÎŒ = sup

nœN
|xn + yn| Æ sup

nœN
(|xn| + |yn|) Æ sup

nœN
|xn| + sup

nœN
|yn| = ÎxÎŒ + ÎyÎŒ.

Note that we used the following property of the supremum: if f, g : N æ R,
then

sup

nœN
(f(n) + g(n)) Æ sup

nœN
f(n) + sup

nœN
g(n).

Finally, this norm is not associated with an inner product because it does not satisfy
the parallelogram identity. Indeed, let us consider the sequences

x = (xn) where xn = 1 +

1

n

for all n Ø 1,

y = (yn) where yn = 1 ≠ 1

n

for all n Ø 1, so
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xn + yn = 2 for all n Ø 1,

xn ≠ yn =

2

n

for all n Ø 1.

Then clearly ÎxÎŒ = 2, ÎyÎŒ = 1, Îx + yÎŒ = 2 and Îx ≠ yÎŒ = 2, so

Îx + yÎ2
Œ + Îx ≠ yÎ2

Œ = 8 ”= 10 = 2 ÎxÎ2
Œ + 2 ÎyÎ2

Œ.

3 Let Mn(C) be the space of n◊n matrices with complex entries. For A œ Mn(C)

we define its trace by tr(A) = a11 + · · · + ann.
a) Show that for A, B œ M3(C) we have tr(AB) = tr(BA) and try to show

this property of the trace for n ◊ n matrices.

b) Let D be the set of all diagonal n◊n matrices. Show that D is a subspace
of Mn(C) and that for any A, B œ D we have AB = BA (in contrast to
arbitrary matrices in Mn(C)).

c) Let S µ Mn(C) be defined as the matrices with tr(A) = 0. Show that S

is a subspace of Mn(C).

Solution. a) We will do the general case – the 3 ◊ 3-case can also be proved by
writing A and B as matrices, multiplying them and calculating the traces of AB and
BA. Let A, B œ Mn(C) be n ◊ n-matrices with entries aij and bij, respectively. If
we let C = AB, then we know (or can show) that the entries of C are given by

cij =

nÿ

k=1
aikbkj. (1)

Similarly, if D = BA, then the entries of D are given by

dij =

nÿ

k=1
bikakj =

nÿ

k=1
akjbik. (2)

The trace is the sum of the diagonal elements. Hence

tr(AB) = tr(C) =

nÿ

i=1
cii =

nÿ

i=1

nÿ

k=1
aikbki (3)

and

tr(BA) = tr(D) =

nÿ

i=1
dii =

nÿ

i=1

nÿ

k=1
akibik. (4)
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Clearly the sums in equations (3) and (4) are equal – they are the same sum except
that the names i and k for the variables have been switched.
b) To show that the diagonal matrices form a subspace, we need to show that if A, B

are diagonal, then ⁄A + B is diagonal for any ⁄ œ C. This is obviously true, since
both scalar multiplication ⁄A and addition A + B is performed in each entry of the
matrices. The fact that AB = BA similarly follows from the fact that multiplication
of diagonal matrices also happens pointwise. To give a formal proof we can use the
general expressions for AB and BA in part a). If C = AB we found that

cij =

nÿ

k=1
aikbkj. (5)

The fact that A is diagonal means that aij = 0 for i ”= j. Hence the only value of k

such that aik ”= 0 is k = i, so in fact

cij =

nÿ

k=1
aikbkj = aiibij. (6)

Since B is diagonal, this expression is 0 when i ”= j. In conclusion

cij =

Y
]

[
aiibii i = j

0 i ”= j.

This just states that the product of two diagonal matrices A and B is the diagonal
matrix obtained by multiplying the diagonal elements of A and B, as you hopefully
knew. One can then argue that this must mean that AB = BA, since both of these
matrices are obtained by multiplying the diagonal elements of A and B. If this is
not clear, please try to do it for two diagonal 2 ◊ 2-matrices.
c) We need to show that if tr(A) = tr(B) = 0 and ⁄ œ C, then tr(⁄A + B) = 0. In
fact, we have that the function tr : Mn(C) æ C is a linear transformation, meaning
that

tr(⁄A + B) = ⁄tr(A) + tr(B),

so if tr(A) = tr(B) = 0, we must have tr(⁄A + B) = 0. The fact that tr is linear is
rather obvious, but we can show it formally. The trace is the sum of the diagonal
elements, so

tr(⁄A + B) =

nÿ

i=1
⁄aii + bii = ⁄

nÿ

i=1
aii +

nÿ

i=1
bii = ⁄tr(A) + tr(B).

4 Suppose (X, È., .Í) is an innerproduct space.
a) Let Ê be a n

th root of unity, i.e. Ê

n
= 1. Show that

Èx, yÍ =

1

n

nÿ

k=1
Ê

kÎx + Ê

k
yÎ2

.

b) Show that
Èx, yÍ =

⁄ 1

0
e

2fiiÏÎx + e

2fiiÏ
yÎ2

dÏ.
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Solution. a) We will write the right hand side using inner products. We have

n≠1ÿ

k=1
Ê

kÎx + Ê

k
yÎ2

=

nÿ

k=1
Ê

kÈx + Ê

k
y, x + Ê

k
yÍ

=

nÿ

k=1
Ê

k
1
Èx, xÍ + ÈÊk

y, Ê

k
yÍ + Ê

kÈy, xÍ + Ê

≠kÈx, yÍ
2

= ÎxÎ2
nÿ

k=1
Ê

k
+ ÎyÎ2

nÿ

k=1
Ê

k
+ Èy, xÍ

nÿ

k=1
Ê

2k
+

nÿ

k=1
Èx, yÍ.

Clearly we need to calculate qn
k=1 Ê

k, where Ê is an n

Õ
th root of unity. This is a

geometric sum, and we know that

nÿ

k=1
Ê

k
=

1 ≠ Ê

n+1

1 ≠ Ê

≠ 1 =

1 ≠ Ê

1 ≠ Ê

≠ 1 = 0.

The ≠1 appears to compensate for the fact that the usual formula for a geometric
sum starts summation at k = 0. Note that we have used Ê

n+1
= Ê since Ê is an n’th

root of unity. The same argument will show that qn
k=1 Ê

2k
= 0. If we plug this into

our previous calculation, we have
n≠1ÿ

k=1
Ê

kÎx + Ê

k
yÎ2

=

nÿ

k=1
Èx, yÍ = nÈx, yÍ.

Divide both sides by n to obtain the desired result.
b) As above we write the norm using inner products, and by using exactly the same
kind of simplifications as above we obtain
⁄ 1

0
e

2fiiÏÎx + e

2fiiÏ
yÎ2

dÏ =

⁄ 1

0
e

2fiiÏ
1
ÎxÎ2

+ e

2fiiÏÈy, xÍ + e

≠2fiiÏÈx, yÍ + ÎyÎ2
2

dÏ

= ÎxÎ2
⁄ 1

0
e

2fiiÏ
dÏ + ÎyÎ2

⁄ 1

0
e

2fiiÏ
dÏ + Èy, xÍ

⁄ 1

0
e

4fiiÏ
dÏ + Èx, yÍ

⁄ 1

0
dÏ

= Èx, yÍ.

The last inequality follows from calculating these integrals, which is straightforward.

5 Let (Rn
, Î.Îp) be the space of real n-tuples with the p-norms ÎxÎp = (

qn
i=1 |xi|p)

1/p

for 1 Æ p < Œ. Show that
nÿ

i=1
|xi| Æ n

(p≠1)/p
(

nÿ

i=1
|xi|p)

1/p
.

Solution. This is an example of Hölder’s inequality. Note that 1
p +

p≠1
p = 1 – in the

terminology of the lecture notes we have that p/(p ≠ 1) is the conjugate exponent
of p. Let x be the n-tuple (x1, x2, ...xn) and let y = (1, 1, ..., 1). Hölder’s inequality
states that
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nÿ

i=1
|xi||yi| Æ

A
nÿ

i=1
|xi|p

B1/p A
nÿ

i=1
1

q

B1/q

=

A
nÿ

i=1
|xi|p

B1/p

n

1/q
,

where q is the conjugate exponent of p. If we now insert that the conjugate exponent
of p is p/(p ≠ 1), we obtain the desired inequality.
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