

1 Show that the sets $U, V \subset \mathcal{P}_4$, the space of polynomials of degree at most 4, defined by

$$U := \{ p \in \mathcal{P}_4 : p(-1) = p(1) = 0 \},\$$

$$V := \{ p \in \mathcal{P}_4 : p(1) = p(2) = p(3) = 0 \}$$

are subspaces of \mathcal{P}_4 and determine the subspace $U \cap V$.

Solution We show that U is a subspace of \mathbf{P}_4 .

Let $p_1, \ldots, p_n \in U$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

Then $p_k(-1) = p_k(1) = 0$ for all indices $k = 1, \ldots, n$.

Consider the linear combination $p = \lambda_1 p_1 + \ldots + \lambda_n p_n$. Then clearly

$$p(-1) = \lambda_1 p_1(1) + \ldots + \lambda_n p_n(1) = \lambda_1 \cdot 0 + \ldots + \lambda_n \cdot 0 = 0,$$

which shows that p(-1) = 0. Similarly, p(1) = 0.

Therefore, $p \in U$, so U is a subspace of \mathbf{P}_4 .

The same kind of argument shows that V is a subspace.

Turning to $U \cap V$, we clearly have

$$U \cap V = \{ p \in \mathbf{P}_4 : p(-1) = p(1) = p(2) = p(3) = 0 \}.$$

This is the set of all real polynomials of degree at most 4 with exactly 4 roots: -1, 1, 2, 3.

Let
$$p_0 := (x+1)(x-1)(x-2)(x-3)$$
.

Then $U \cap V = \{\lambda p_0 \colon \lambda \in \mathbb{R}\}.$

2 Prove that $(l^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$ is a normed space, where for any bounded sequence $x = (x_n) \in l^{\infty}(\mathbb{R})$ we define

$$||x||_{\infty} := \sup_{n \in \mathbb{N}} |x_n|.$$

Is this norm associated with an inner product?

Solution. We verify the three axioms of the norm. Let $x = (x_n) \in l^{\infty}(\mathbb{R})$.

(i) Since $|a| \ge 0$ for all real numbers a,

$$\left\|x\right\|_{\infty} = \sup_{n \in \mathbb{N}} |x_n| \ge 0.$$

Moreover, if $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n| = 0$, then $|x_n| = 0$ for all $n \in \mathbb{N}$, hence $x_n = 0$ for all $n \in \mathbb{N}$. This shows that $x = (x_n) = (0)$, so x is the null vector in $l^{\infty}(\mathbb{R})$.

(ii) Let $\lambda \in \mathbb{R}$. Then

$$\|\lambda x\|_{\infty} = \sup_{n \in \mathbb{N}} |\lambda x_n| = \sup_{n \in \mathbb{N}} |\lambda| |x_n| = |\lambda| \sup_{n \in \mathbb{N}} |x_n| = |\lambda| \|x\|_{\infty}.$$

Note that we used the following property of the supremum: if $A \subset \mathbb{R}$ and $c \ge 0$, then

$$\sup(cA) = c\,\sup(A).$$

(iii) Let $x = (x_n)$ and $y = (y_n) \in l^{\infty}(\mathbb{R})$. Since for any two real numbers a and b, $|a+b| \leq |a|+|b|$, we have

$$||x+y||_{\infty} = \sup_{n \in \mathbb{N}} |x_n+y_n| \le \sup_{n \in \mathbb{N}} (|x_n|+|y_n|) \le \sup_{n \in \mathbb{N}} |x_n| + \sup_{n \in \mathbb{N}} |y_n| = ||x||_{\infty} + ||y||_{\infty}.$$

Note that we used the following property of the supremum: if $f, g \colon \mathbb{N} \to \mathbb{R}$, then

$$\sup_{n \in \mathbb{N}} (f(n) + g(n)) \le \sup_{n \in \mathbb{N}} f(n) + \sup_{n \in \mathbb{N}} g(n).$$

Finally, this norm is *not* associated with an inner product because it does not satisfy the parallelogram identity. Indeed, let us consider the sequences

$$x = (x_n)$$
 where $x_n = 1 + \frac{1}{n}$ for all $n \ge 1$,
 $y = (y_n)$ where $y_n = 1 - \frac{1}{n}$ for all $n \ge 1$, so

$$x_n + y_n = 2$$
 for all $n \ge 1$,
 $x_n - y_n = \frac{2}{n}$ for all $n \ge 1$.

Then clearly
$$||x||_{\infty} = 2$$
, $||y||_{\infty} = 1$, $||x+y||_{\infty} = 2$ and $||x-y||_{\infty} = 2$, so
 $||x+y||_{\infty}^{2} + ||x-y||_{\infty}^{2} = 8 \neq 10 = 2 ||x||_{\infty}^{2} + 2 ||y||_{\infty}^{2}$.

- **3** Let $M_n(\mathbb{C})$ be the space of $n \times n$ matrices with complex entries. For $A \in M_n(\mathbb{C})$ we define its *trace* by $\operatorname{tr}(A) = a_{11} + \cdots + a_{nn}$.
 - a) Show that for $A, B \in M_3(\mathbb{C})$ we have $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ and try to show this property of the trace for $n \times n$ matrices.
 - **b)** Let \mathcal{D} be the set of all diagonal $n \times n$ matrices. Show that \mathcal{D} is a subspace of $M_n(\mathbb{C})$ and that for any $A, B \in D$ we have AB = BA (in contrast to arbitrary matrices in $M_n(\mathbb{C})$).
 - c) Let $S \subset M_n(\mathbb{C})$ be defined as the matrices with tr(A) = 0. Show that S is a subspace of $M_n(\mathbb{C})$.

Solution. a) We will do the general case – the 3×3 -case can also be proved by writing A and B as matrices, multiplying them and calculating the traces of AB and BA. Let $A, B \in M_n(\mathbb{C})$ be $n \times n$ -matrices with entries a_{ij} and $b_i j$, respectively. If we let C = AB, then we know (or can show) that the entries of C are given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$
(1)

Similarly, if D = BA, then the entries of D are given by

$$d_{ij} = \sum_{k=1}^{n} b_{ik} a_{kj} = \sum_{k=1}^{n} a_{kj} b_{ik}.$$
 (2)

The trace is the sum of the diagonal elements. Hence

$$tr(AB) = tr(C) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}$$
(3)

and

$$\operatorname{tr}(BA) = \operatorname{tr}(D) = \sum_{i=1}^{n} d_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ki} b_{ik}.$$
(4)

Clearly the sums in equations (3) and (4) are equal – they are the same sum except that the *names* i and k for the variables have been switched.

b) To show that the diagonal matrices form a subspace, we need to show that if A, B are diagonal, then $\lambda A + B$ is diagonal for any $\lambda \in \mathbb{C}$. This is obviously true, since both scalar multiplication λA and addition A + B is performed in each entry of the matrices. The fact that AB = BA similarly follows from the fact that multiplication of diagonal matrices also happens pointwise. To give a formal proof we can use the general expressions for AB and BA in part a). If C = AB we found that

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$
(5)

The fact that A is diagonal means that $a_{ij} = 0$ for $i \neq j$. Hence the only value of k such that $a_{ik} \neq 0$ is k = i, so in fact

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{ii} b_{ij}.$$
 (6)

Since B is diagonal, this expression is 0 when $i \neq j$. In conclusion

$$c_{ij} = \begin{cases} a_{ii}b_{ii} & i = j\\ 0 & i \neq j. \end{cases}$$

This just states that the product of two diagonal matrices A and B is the diagonal matrix obtained by multiplying the diagonal elements of A and B, as you hopefully knew. One can then argue that this must mean that AB = BA, since both of these matrices are obtained by multiplying the diagonal elements of A and B. If this is not clear, please try to do it for two diagonal 2×2 -matrices.

c) We need to show that if tr(A) = tr(B) = 0 and $\lambda \in \mathbb{C}$, then $tr(\lambda A + B) = 0$. In fact, we have that the function $tr : M_n(\mathbb{C}) \to \mathbb{C}$ is a linear transformation, meaning that

$$\operatorname{tr}(\lambda A + B) = \lambda \operatorname{tr}(A) + \operatorname{tr}(B),$$

so if tr(A) = tr(B) = 0, we must have $tr(\lambda A + B) = 0$. The fact that tr is linear is rather obvious, but we can show it formally. The trace is the sum of the diagonal elements, so

$$\operatorname{tr}(\lambda A + B) = \sum_{i=1}^{n} \lambda a_{ii} + b_{ii} = \lambda \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = \lambda \operatorname{tr}(A) + \operatorname{tr}(B).$$

4 Suppose $(X, \langle ., . \rangle)$ is an innerproduct space.

a) Let ω be a n^{th} root of unity, i.e. $\omega^n = 1$. Show that

$$\langle x, y \rangle = \frac{1}{n} \sum_{k=1}^{n} \omega^k ||x + \omega^k y||^2.$$

b) Show that

$$\langle x, y \rangle = \int_0^1 e^{2\pi i\varphi} \|x + e^{2\pi i\varphi}y\|^2 d\varphi.$$

Solution. a) We will write the right hand side using inner products. We have

$$\begin{split} \sum_{k=1}^{n-1} \omega^k \|x + \omega^k y\|^2 &= \sum_{k=1}^n \omega^k \langle x + \omega^k y, x + \omega^k y \rangle \\ &= \sum_{k=1}^n \omega^k \left(\langle x, x \rangle + \langle \omega^k y, \omega^k y \rangle + \omega^k \langle y, x \rangle + \omega^{-k} \langle x, y \rangle \right) \\ &= \|x\|^2 \sum_{k=1}^n \omega^k + \|y\|^2 \sum_{k=1}^n \omega^k + \langle y, x \rangle \sum_{k=1}^n \omega^{2k} + \sum_{k=1}^n \langle x, y \rangle. \end{split}$$

Clearly we need to calculate $\sum_{k=1}^{n} \omega^k$, where ω is an n'th root of unity. This is a geometric sum, and we know that

$$\sum_{k=1}^{n} \omega^{k} = \frac{1 - \omega^{n+1}}{1 - \omega} - 1 = \frac{1 - \omega}{1 - \omega} - 1 = 0.$$

The -1 appears to compensate for the fact that the usual formula for a geometric sum starts summation at k = 0. Note that we have used $\omega^{n+1} = \omega$ since ω is an *n*'th root of unity. The same argument will show that $\sum_{k=1}^{n} \omega^{2k} = 0$. If we plug this into our previous calculation, we have

$$\sum_{k=1}^{n-1} \omega^k \|x + \omega^k y\|^2 = \sum_{k=1}^n \langle x, y \rangle = n \langle x, y \rangle.$$

Divide both sides by n to obtain the desired result.

b) As above we write the norm using inner products, and by using exactly the same kind of simplifications as above we obtain

$$\begin{split} \int_0^1 e^{2\pi i\varphi} \|x + e^{2\pi i\varphi}y\|^2 d\varphi &= \int_0^1 e^{2\pi i\varphi} \left(\|x\|^2 + e^{2\pi i\varphi} \langle y, x \rangle + e^{-2\pi i\varphi} \langle x, y \rangle + \|y\|^2 \right) d\varphi \\ &= \|x\|^2 \int_0^1 e^{2\pi i\varphi} d\varphi + \|y\|^2 \int_0^1 e^{2\pi i\varphi} d\varphi + \langle y, x \rangle \int_0^1 e^{4\pi i\varphi} d\varphi + \langle x, y \rangle \int_0^1 d\varphi \\ &= \langle x, y \rangle. \end{split}$$

The last inequality follows from calculating these integrals, which is straightforward.

5 Let $(\mathbb{R}^n, \|.\|_p)$ be the space of real n-tuples with the p-norms $\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $1 \le p < \infty$. Show that

$$\sum_{i=1}^{n} |x_i| \le n^{(p-1)/p} (\sum_{i=1}^{n} |x_i|^p)^{1/p}.$$

Solution. This is an example of Hölder's inequality. Note that $\frac{1}{p} + \frac{p-1}{p} = 1$ – in the terminology of the lecture notes we have that p/(p-1) is the conjugate exponent of p. Let x be the n-tuple $(x_1, x_2, ..., x_n)$ and let y = (1, 1, ..., 1). Hölder's inequality states that

$$\sum_{i=1}^{n} |x_i| |y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} 1^q\right)^{1/q}$$
$$= \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} n^{1/q},$$

where q is the conjugate exponent of p. If we now insert that the conjugate exponent of p is p/(p-1), we obtain the desired inequality.