Norwegian University of Science and Technology
Department of Mathematical

Exercise set 4:

Sciences

1 Show that the sets $U, V \subset \mathcal{P}_{4}$, the space of polynomials of degree at most 4, defined by

$$
\begin{aligned}
U & :=\left\{p \in \mathcal{P}_{4}: p(-1)=p(1)=0\right\} \\
V & :=\left\{p \in \mathcal{P}_{4}: p(1)=p(2)=p(3)=0\right\}
\end{aligned}
$$

are subspaces of \mathcal{P}_{4} and determine the subspace $U \cap V$.

Solution We show that U is a subspace of \mathbf{P}_{4}.
Let $p_{1}, \ldots, p_{n} \in U$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$.
Then $p_{k}(-1)=p_{k}(1)=0$ for all indices $k=1, \ldots, n$.
Consider the linear combination $p=\lambda_{1} p_{1}+\ldots+\lambda_{n} p_{n}$. Then clearly

$$
p(-1)=\lambda_{1} p_{1}(1)+\ldots+\lambda_{n} p_{n}(1)=\lambda_{1} \cdot 0+\ldots \lambda_{n} \cdot 0=0
$$

which shows that $p(-1)=0$. Similarly, $p(1)=0$.
Therefore, $p \in U$, so U is a subspace of \mathbf{P}_{4}.
The same kind of argument shows that V is a subspace.
Turning to $U \cap V$, we clearly have

$$
U \cap V=\left\{p \in \mathbf{P}_{4}: p(-1)=p(1)=p(2)=p(3)=0\right\} .
$$

This is the set of all real polynomials of degree at most 4 with exactly 4 roots: $-1,1,2,3$.

Let $p_{0}:=(x+1)(x-1)(x-2)(x-3)$.
Then $U \cap V=\left\{\lambda p_{0}: \lambda \in \mathbb{R}\right\}$.

2 Prove that $\left(l^{\infty}(\mathbb{R}),\|\cdot\|_{\infty}\right)$ is a normed space, where for any bounded sequence $x=\left(x_{n}\right) \in l^{\infty}(\mathbb{R})$ we define

$$
\|x\|_{\infty}:=\sup _{n \in \mathbb{N}}\left|x_{n}\right| .
$$

Is this norm associated with an inner product?

Solution. We verify the three axioms of the norm. Let $x=\left(x_{n}\right) \in l^{\infty}(\mathbb{R})$.
(i) Since $|a| \geq 0$ for all real numbers a,

$$
\|x\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right| \geq 0
$$

Moreover, if $\|x\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|=0$, then $\left|x_{n}\right|=0$ for all $n \in \mathbb{N}$, hence $x_{n}=0$ for all $n \in \mathbb{N}$. This shows that $x=\left(x_{n}\right)=(0)$, so x is the null vector in $l^{\infty}(\mathbb{R})$.
(ii) Let $\lambda \in \mathbb{R}$. Then

$$
\|\lambda x\|_{\infty}=\sup _{n \in \mathbb{N}}\left|\lambda x_{n}\right|=\sup _{n \in \mathbb{N}}|\lambda|\left|x_{n}\right|=|\lambda| \sup _{n \in \mathbb{N}}\left|x_{n}\right|=|\lambda|\|x\|_{\infty} .
$$

Note that we used the following property of the supremum: if $A \subset \mathbb{R}$ and $c \geq 0$, then

$$
\sup (c A)=c \sup (A)
$$

(iii) Let $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right) \in l^{\infty}(\mathbb{R})$. Since for any two real numbers a and b, $|a+b| \leq|a|+|b|$, we have

$$
\|x+y\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}+y_{n}\right| \leq \sup _{n \in \mathbb{N}}\left(\left|x_{n}\right|+\left|y_{n}\right|\right) \leq \sup _{n \in \mathbb{N}}\left|x_{n}\right|+\sup _{n \in \mathbb{N}}\left|y_{n}\right|=\|x\|_{\infty}+\|y\|_{\infty} .
$$

Note that we used the following property of the supremum: if $f, g: \mathbb{N} \rightarrow \mathbb{R}$, then

$$
\sup _{n \in \mathbb{N}}(f(n)+g(n)) \leq \sup _{n \in \mathbb{N}} f(n)+\sup _{n \in \mathbb{N}} g(n) .
$$

Finally, this norm is not associated with an inner product because it does not satisfy the parallelogram identity. Indeed, let us consider the sequences

$$
\begin{aligned}
& x=\left(x_{n}\right) \text { where } x_{n}=1+\frac{1}{n} \text { for all } n \geq 1, \\
& y=\left(y_{n}\right) \text { where } y_{n}=1-\frac{1}{n} \text { for all } n \geq 1, \text { so }
\end{aligned}
$$

$$
\begin{array}{ll}
x_{n}+y_{n}=2 & \text { for all } n \geq 1, \\
x_{n}-y_{n}=\frac{2}{n} & \text { for all } n \geq 1
\end{array}
$$

Then clearly $\|x\|_{\infty}=2,\|y\|_{\infty}=1,\|x+y\|_{\infty}=2$ and $\|x-y\|_{\infty}=2$, so

$$
\|x+y\|_{\infty}^{2}+\|x-y\|_{\infty}^{2}=8 \neq 10=2\|x\|_{\infty}^{2}+2\|y\|_{\infty}^{2}
$$

3 Let $M_{n}(\mathbb{C})$ be the space of $n \times n$ matrices with complex entries. For $A \in M_{n}(\mathbb{C})$ we define its trace by $\operatorname{tr}(A)=a_{11}+\cdots+a_{n n}$.
a) Show that for $A, B \in M_{3}(\mathbb{C})$ we have $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ and try to show this property of the trace for $n \times n$ matrices.
b) Let \mathcal{D} be the set of all diagonal $n \times n$ matrices. Show that \mathcal{D} is a subspace of $M_{n}(\mathbb{C})$ and that for any $A, B \in D$ we have $A B=B A$ (in contrast to arbitrary matrices in $M_{n}(\mathbb{C})$).
c) Let $S \subset M_{n}(\mathbb{C})$ be defined as the matrices with $\operatorname{tr}(A)=0$. Show that S is a subspace of $M_{n}(\mathbb{C})$.

Solution. a) We will do the general case - the 3×3-case can also be proved by writing A and B as matrices, multiplying them and calculating the traces of $A B$ and $B A$. Let $A, B \in M_{n}(\mathbb{C})$ be $n \times n$-matrices with entries $a_{i j}$ and $b_{i} j$, respectively. If we let $C=A B$, then we know (or can show) that the entries of C are given by

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} . \tag{1}
\end{equation*}
$$

Similarly, if $D=B A$, then the entries of D are given by

$$
\begin{equation*}
d_{i j}=\sum_{k=1}^{n} b_{i k} a_{k j}=\sum_{k=1}^{n} a_{k j} b_{i k} . \tag{2}
\end{equation*}
$$

The trace is the sum of the diagonal elements. Hence

$$
\begin{equation*}
\operatorname{tr}(A B)=\operatorname{tr}(C)=\sum_{i=1}^{n} c_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}(B A)=\operatorname{tr}(D)=\sum_{i=1}^{n} d_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{k i} b_{i k} . \tag{4}
\end{equation*}
$$

Clearly the sums in equations (3) and (4) are equal - they are the same sum except that the names i and k for the variables have been switched.
b) To show that the diagonal matrices form a subspace, we need to show that if A, B are diagonal, then $\lambda A+B$ is diagonal for any $\lambda \in \mathbb{C}$. This is obviously true, since both scalar multiplication λA and addition $A+B$ is performed in each entry of the matrices. The fact that $A B=B A$ similarly follows from the fact that multiplication of diagonal matrices also happens pointwise. To give a formal proof we can use the general expressions for $A B$ and $B A$ in part a). If $C=A B$ we found that

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} . \tag{5}
\end{equation*}
$$

The fact that A is diagonal means that $a_{i j}=0$ for $i \neq j$. Hence the only value of k such that $a_{i k} \neq 0$ is $k=i$, so in fact

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i i} b_{i j} . \tag{6}
\end{equation*}
$$

Since B is diagonal, this expression is 0 when $i \neq j$. In conclusion

$$
c_{i j}= \begin{cases}a_{i i} b_{i i} & i=j \\ 0 & i \neq j .\end{cases}
$$

This just states that the product of two diagonal matrices A and B is the diagonal matrix obtained by multiplying the diagonal elements of A and B, as you hopefully knew. One can then argue that this must mean that $A B=B A$, since both of these matrices are obtained by multiplying the diagonal elements of A and B. If this is not clear, please try to do it for two diagonal 2×2-matrices.
c) We need to show that if $\operatorname{tr}(A)=\operatorname{tr}(B)=0$ and $\lambda \in \mathbb{C}$, then $\operatorname{tr}(\lambda A+B)=0$. In fact, we have that the function $\operatorname{tr}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ is a linear transformation, meaning that

$$
\operatorname{tr}(\lambda A+B)=\lambda \operatorname{tr}(A)+\operatorname{tr}(B)
$$

so if $\operatorname{tr}(A)=\operatorname{tr}(B)=0$, we must have $\operatorname{tr}(\lambda A+B)=0$. The fact that tr is linear is rather obvious, but we can show it formally. The trace is the sum of the diagonal elements, so

$$
\operatorname{tr}(\lambda A+B)=\sum_{i=1}^{n} \lambda a_{i i}+b_{i i}=\lambda \sum_{i=1}^{n} a_{i i}+\sum_{i=1}^{n} b_{i i}=\lambda \operatorname{tr}(A)+\operatorname{tr}(B) .
$$

4 Suppose $(X,\langle.,\rangle$.$) is an innerproduct space.$
a) Let ω be a $n^{\text {th }}$ root of unity, i.e. $\omega^{n}=1$. Show that

$$
\langle x, y\rangle=\frac{1}{n} \sum_{k=1}^{n} \omega^{k}\left\|x+\omega^{k} y\right\|^{2} .
$$

b) Show that

$$
\langle x, y\rangle=\int_{0}^{1} e^{2 \pi i \varphi}\left\|x+e^{2 \pi i \varphi} y\right\|^{2} d \varphi
$$

Solution. a) We will write the right hand side using inner products. We have

$$
\begin{aligned}
\sum_{k=1}^{n-1} \omega^{k}\left\|x+\omega^{k} y\right\|^{2} & =\sum_{k=1}^{n} \omega^{k}\left\langle x+\omega^{k} y, x+\omega^{k} y\right\rangle \\
& =\sum_{k=1}^{n} \omega^{k}\left(\langle x, x\rangle+\left\langle\omega^{k} y, \omega^{k} y\right\rangle+\omega^{k}\langle y, x\rangle+\omega^{-k}\langle x, y\rangle\right) \\
& =\|x\|^{2} \sum_{k=1}^{n} \omega^{k}+\|y\|^{2} \sum_{k=1}^{n} \omega^{k}+\langle y, x\rangle \sum_{k=1}^{n} \omega^{2 k}+\sum_{k=1}^{n}\langle x, y\rangle .
\end{aligned}
$$

Clearly we need to calculate $\sum_{k=1}^{n} \omega^{k}$, where ω is an n^{\prime} th root of unity. This is a geometric sum, and we know that

$$
\sum_{k=1}^{n} \omega^{k}=\frac{1-\omega^{n+1}}{1-\omega}-1=\frac{1-\omega}{1-\omega}-1=0 .
$$

The -1 appears to compensate for the fact that the usual formula for a geometric sum starts summation at $k=0$. Note that we have used $\omega^{n+1}=\omega$ since ω is an n 'th root of unity. The same argument will show that $\sum_{k=1}^{n} \omega^{2 k}=0$. If we plug this into our previous calculation, we have

$$
\sum_{k=1}^{n-1} \omega^{k}\left\|x+\omega^{k} y\right\|^{2}=\sum_{k=1}^{n}\langle x, y\rangle=n\langle x, y\rangle .
$$

Divide both sides by n to obtain the desired result.
b) As above we write the norm using inner products, and by using exactly the same kind of simplifications as above we obtain

$$
\begin{aligned}
\int_{0}^{1} e^{2 \pi i \varphi}\left\|x+e^{2 \pi i \varphi} y\right\|^{2} d \varphi & =\int_{0}^{1} e^{2 \pi i \varphi}\left(\|x\|^{2}+e^{2 \pi i \varphi}\langle y, x\rangle+e^{-2 \pi i \varphi}\langle x, y\rangle+\|y\|^{2}\right) d \varphi \\
& =\|x\|^{2} \int_{0}^{1} e^{2 \pi i \varphi} d \varphi+\|y\|^{2} \int_{0}^{1} e^{2 \pi i \varphi} d \varphi+\langle y, x\rangle \int_{0}^{1} e^{4 \pi i \varphi} d \varphi+\langle x, y\rangle \int_{0}^{1} d \varphi \\
& =\langle x, y\rangle .
\end{aligned}
$$

The last inequality follows from calculating these integrals, which is straightforward.

5 Let $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ be the space of real n-tuples with the p-norms $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $1 \leq p<\infty$. Show that

$$
\sum_{i=1}^{n}\left|x_{i}\right| \leq n^{(p-1) / p}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} .
$$

Solution. This is an example of Hölder's inequality. Note that $\frac{1}{p}+\frac{p-1}{p}=1$ - in the terminology of the lecture notes we have that $p /(p-1)$ is the conjugate exponent of p. Let x be the n-tuple $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ and let $y=(1,1, \ldots, 1)$. Hölder's inequality states that

$$
\begin{aligned}
\sum_{i=1}^{n}\left|x_{i}\right|\left|y_{i}\right| & \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} 1^{q}\right)^{1 / q} \\
& =\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} n^{1 / q}
\end{aligned}
$$

where q is the conjugate exponent of p. If we now insert that the conjugate exponent of p is $p /(p-1)$, we obtain the desired inequality.

