Task 1

A capasitor has the characteristic

$$I = C \frac{dV}{dt}$$

The current is defined as

where q is the electrical charge through the conductor. Therefore, the characteristic can also be written

 $I = \frac{dq}{dt}$

$$q = CV$$

Figure 1: Capacitor circuit

A piezoelectric sensor outputs a charge q propriate to the force F on the sensor:

$$q = KF$$

The circuit equivalent is given in Figure 2

Figure 2: Piezo equivalent circuit

which has the equivalent The venin representation shown in Figure 3

Figure 3: Piezo equivalent circuit

A charge amplifier is depicted in Figure 4 where C_C is the capacitance of the cable.

Figure 4: Charge amplifier circuit

Task 1.a

Show that $V_f = -V_{OUT}$.

Task 1.b

Show that $I_c = 0$.

Task 1.c

Show that $I_f = -I_P$.

Task 1.d

Show that $V_{OUT} = -\frac{K}{C_P}F$.

Task 1 Solution

Task 1.a

Since the positive input of the amplifier is connected to ground, the negative input will be 0 V. This means that C_f is connected to V_{OUT} in one end and 0 V in the other. This leads to $V_f = -V_{OUT}$.

Task 1.b

Since there is no current going between the positive and negative input of the amplifier, $\underline{I_C}$ will be 0.

Task 1.c

Since there is no current going between the positive and negative input of the amplifier, $I_P + I_f = 0 \Rightarrow I_f = -I_P$.

Task 1.d

 $q = C_P V_P$ and q = KF means $V_P = \frac{K}{C_P} F$. This means that

$$I_P = -I_f$$

$$C_P \frac{dV_P}{dt} = -C_f \frac{dV_{OUT}}{dt}$$

$$-\frac{C_P}{C_f} V_P = V_{OUT}$$

$$V_{OUT} = -\frac{C_P}{C_f} \frac{KF}{C_P} = -\frac{K}{C_f} F$$

Task 2

An accelerometer has a proof mass m with position x_0 . he mass is connected with a spring and a damper to the base, which has position x_i . The accelerometer output is the relative position

$$x_r = x_0 - x_i$$

of the proof mass. The accelerometer is used to measure the acceleration

$$a_i = \frac{d^2}{dt^2} x_i$$

Suppose that m = 0.001 kg and $k = 40\,000 \text{ N m}^{-1}$

Task 2.a

What is the natural frequency of the spring-damper system?

Task 2.b

Suppose that frequencies $x_i(t) = X_0 cos(2\pi f t)$. For what range of f will the accelerometer give an accurate measurement of a_i ?

Task 2 Solution

Task 2.a Solution

The natrual frequency is given as

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{40000}{0.001}} = \underline{40\,000\,000\,\mathrm{s\,m^{-1}}}$$

Task 2.b Solution

As long as the frequency f in x_i is such that $f < \omega_n = 40\,000\,000\,\mathrm{s\,m^{-1}}$, the accelerometer will give an accurate measurement of a_i .

Task 3

B_0	B_1	B_2		G_0	G_1	G_2
0	0	0		0	0	0
0	0	1		0	0	1
0	1	0		0	1	1
0	1	1		0	1	0
1	0	0		1	1	0
1	0	1		1	1	1
1	1	0		1	0	1
1	1	1		1	0	0
(a) Binary code			(b) Gray code			

Figure 5: Binary code and gray code

Digital optical encoders (textbook p. 383) use gray code so that only one bit is changed at the time when counting from 0 to $2^n - 1$, where n is the number of bits.

Task 3.a

Find the logic gates of the gray code to convert G_0 , G_1 and G_2 to B_0 , B_1 and B_2 when n = 3. of the binary code.

Task 3 Solution

Task 3.a

Figure 6: Logic gates to convert from G_0 , G_1 and G_2 to B_0 , B_1 and B_2

The logic gates which converts G_0 , G_1 and G_2 to B_0 , B_1 and B_2 is shown in Figure 6.